000863217 001__ 863217
000863217 005__ 20210130001925.0
000863217 0247_ $$2doi$$a10.1016/j.jmmm.2019.165378
000863217 0247_ $$2ISSN$$a0304-8853
000863217 0247_ $$2ISSN$$a1873-4766
000863217 0247_ $$2WOS$$aWOS:000471650700008
000863217 037__ $$aFZJ-2019-03309
000863217 082__ $$a530
000863217 1001_ $$0P:(DE-HGF)0$$aKumar, Durgesh$$b0
000863217 245__ $$aEnhancement of Curie- and spin-spiral temperatures with doping Fe in multiferroic CoCr2O4 nanoparticles
000863217 260__ $$aAmsterdam$$bNorth-Holland Publ. Co.$$c2019
000863217 3367_ $$2DRIVER$$aarticle
000863217 3367_ $$2DataCite$$aOutput Types/Journal article
000863217 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1560862309_8214
000863217 3367_ $$2BibTeX$$aARTICLE
000863217 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863217 3367_ $$00$$2EndNote$$aJournal Article
000863217 520__ $$aMultiferroic, CoCr2O4 bulk material undergoes successive magnetic transitions such as paramagnetic to collinear ferrimagnetic state at Curie temperature (TC) and non-collinear spin-spiral ordering temperature TS followed by a lock-in-transition TL. In this paper, the rich sequence of magnetic transitions in CoCr2O4 nanoparticles after doping with iron ions are investigated by varying the concentration from x = 10 to 40%. With increasing iron concentration from 10 to 40%, while TC increases from 102 to 160 K higher than the TC of pure CoCr2O4, TS increases from 26 to 40 K. Later transition is clearly shown by sharp transition in specific heat measurement. While enhancement in TC is attributed to increase in lattice expansion and the exchange interaction between tetrahedral (A) and octahedral (B) sites, spin-spiral ordering is dictated by B-B interaction. Further, we have examined the magnetic transitions through neutron scattering using polarized neutron beam along three orthogonal directions. We observe that the para to ferrimagnetic transition is found to be continuous and the spiral ordering is diffused in nature irrespective of composition.
000863217 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x0
000863217 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000863217 588__ $$aDataset connected to CrossRef
000863217 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000863217 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000863217 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000863217 7001_ $$0P:(DE-Juel1)141702$$aNemkovskiy, Kirill$$b1
000863217 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b2$$ufzj
000863217 7001_ $$0P:(DE-HGF)0$$aRath, Chandana$$b3$$eCorresponding author
000863217 773__ $$0PERI:(DE-600)1479000-2$$a10.1016/j.jmmm.2019.165378$$gVol. 488, p. 165378 -$$p165378 -$$tJournal of magnetism and magnetic materials$$v488$$x0304-8853$$y2019
000863217 909CO $$ooai:juser.fz-juelich.de:863217$$pVDB$$pVDB:MLZ
000863217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141702$$aForschungszentrum Jülich$$b1$$kFZJ
000863217 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130991$$aForschungszentrum Jülich$$b2$$kFZJ
000863217 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x0
000863217 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000863217 9141_ $$y2019
000863217 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863217 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN MAGN MATER : 2017
000863217 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863217 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863217 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863217 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863217 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863217 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863217 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863217 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863217 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863217 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863217 920__ $$lyes
000863217 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000863217 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000863217 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000863217 980__ $$ajournal
000863217 980__ $$aVDB
000863217 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000863217 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000863217 980__ $$aI:(DE-588b)4597118-3
000863217 980__ $$aUNRESTRICTED