000863221 001__ 863221
000863221 005__ 20240711085631.0
000863221 0247_ $$2doi$$a10.1111/jace.15988
000863221 0247_ $$2ISSN$$a0002-7820
000863221 0247_ $$2ISSN$$a1551-2916
000863221 0247_ $$2Handle$$a2128/22365
000863221 0247_ $$2WOS$$aWOS:000459610500027
000863221 037__ $$aFZJ-2019-03313
000863221 082__ $$a660
000863221 1001_ $$0P:(DE-Juel1)165865$$aNaqash, Sahir$$b0$$eCorresponding author
000863221 245__ $$aMicrostructure-conductivity relationship of Na 3 Zr 2 (SiO 4 ) 2 (PO 4 ) ceramics
000863221 260__ $$aWesterville, Ohio$$bSoc.$$c2019
000863221 3367_ $$2DRIVER$$aarticle
000863221 3367_ $$2DataCite$$aOutput Types/Journal article
000863221 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561465913_2442
000863221 3367_ $$2BibTeX$$aARTICLE
000863221 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863221 3367_ $$00$$2EndNote$$aJournal Article
000863221 520__ $$aThe ionic conductivity of solid electrolytes is dependent on synthesis and processing conditions, ie, powder properties, shaping parameters, sintering time (ts), and sintering temperature (Ts). In this study, Na3Zr2(SiO4)2(PO4) was sintered at 1200 and 1250°C for 0‐10 hours and its microstructure and electrical performance were investigated by means of scanning electron microscopy and impedance spectroscopy. After sintering under all conditions, the sodium super‐ionic conductor‐type structure was formed along with ZrO2 as a secondary phase. The microstructure investigation revealed a bimodal particle size distribution and grain growth at both Ts. The density of samples increased from 60% at 1200°C for 0 hours to 93% at 1250°C for 10 hours. The ionic conductivity of the samples increased with ts due to densification and grain growth, ranging from 0.13 to 0.71 mS/cm, respectively. The corresponding equivalent circuit fitting for the impedance spectra revealed that grain boundary resistance is the prime factor contributing to the changing conductivity after sintering. The activation energy of the bulk conductivity (Ea,bulk) remained almost constant (0.26 eV) whereas the activation energy of the total conductivity (Ea) exhibited a decreasing trend from 0.37 to 0.30 eV for the samples with ts = 0 and 10 hours, respectively—both sintered at 1250°C. In this study, the control of the grain boundaries improved the electrical conductivity by a factor of 6.
000863221 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863221 588__ $$aDataset connected to CrossRef
000863221 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b1$$ufzj
000863221 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b2$$ufzj
000863221 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000863221 773__ $$0PERI:(DE-600)2008170-4$$a10.1111/jace.15988$$gVol. 102, no. 3, p. 1057 - 1070$$n3$$p1057 - 1070$$tJournal of the American Ceramic Society$$v102$$x0002-7820$$y2019
000863221 8564_ $$uhttps://juser.fz-juelich.de/record/863221/files/Naqash_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf$$yRestricted
000863221 8564_ $$uhttps://juser.fz-juelich.de/record/863221/files/Manuscript%20-%20Microstructure%20vs.%20conductivity-submitted%20vFinal.pdf$$yPublished on 2018-08-13. Available in OpenAccess from 2019-08-13.
000863221 8564_ $$uhttps://juser.fz-juelich.de/record/863221/files/Manuscript%20-%20Microstructure%20vs.%20conductivity-submitted%20vFinal.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-08-13. Available in OpenAccess from 2019-08-13.
000863221 8564_ $$uhttps://juser.fz-juelich.de/record/863221/files/Naqash_et_al-2019-Journal_of_the_American_Ceramic_Society.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863221 909CO $$ooai:juser.fz-juelich.de:863221$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165865$$aForschungszentrum Jülich$$b0$$kFZJ
000863221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b1$$kFZJ
000863221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b2$$kFZJ
000863221 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000863221 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863221 9141_ $$y2019
000863221 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863221 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863221 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863221 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000863221 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM CERAM SOC : 2017
000863221 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863221 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863221 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863221 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863221 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863221 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863221 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863221 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863221 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863221 920__ $$lyes
000863221 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863221 9801_ $$aFullTexts
000863221 980__ $$ajournal
000863221 980__ $$aVDB
000863221 980__ $$aUNRESTRICTED
000863221 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863221 981__ $$aI:(DE-Juel1)IMD-2-20101013