000863231 001__ 863231
000863231 005__ 20240711085706.0
000863231 0247_ $$2doi$$a10.1149/2.0491903jes
000863231 0247_ $$2ISSN$$a0013-4651
000863231 0247_ $$2ISSN$$a0096-4743
000863231 0247_ $$2ISSN$$a0096-4786
000863231 0247_ $$2ISSN$$a1945-6859
000863231 0247_ $$2ISSN$$a1945-7111
000863231 0247_ $$2ISSN$$a2002-2015
000863231 0247_ $$2ISSN$$a2156-7395
000863231 0247_ $$2Handle$$a2128/22368
000863231 0247_ $$2WOS$$aWOS:000455866100001
000863231 037__ $$aFZJ-2019-03321
000863231 082__ $$a660
000863231 1001_ $$00000-0002-2760-8337$$aKehne, P.$$b0$$eCorresponding author
000863231 245__ $$aElectrochemical Performance of All-Solid-State Sodium-Ion Model Cells with Crystalline Na x CoO 2 Thin-Film Cathodes
000863231 260__ $$aPennington, NJ$$bElectrochemical Soc.$$c2019
000863231 3367_ $$2DRIVER$$aarticle
000863231 3367_ $$2DataCite$$aOutput Types/Journal article
000863231 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561467510_2442
000863231 3367_ $$2BibTeX$$aARTICLE
000863231 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863231 3367_ $$00$$2EndNote$$aJournal Article
000863231 520__ $$aA common way to improve the electrochemical performance of the NaxCoO2 thin-film cathodes is to increase their crystallinity. Here we present our study of the electrochemical performance of all-solid-state sodium ion batteries with NaxCoO2 thin-film cathodes having two different degrees of crystallinity tuned by their post-deposition annealing at 700°C. The NaxCoO2 cathode thin-films were grown by pulsed laser deposition onto a bulk Na3.4Sc0.4Zr1.6(SiO4)2(PO4) (Nasicon) solid electrolyte substrates and assembled with sodium metal into a Swagelok battery cells. Cells with the low-crystalline NaxCoO2 cathodes show discharge capacities of up to 124 mAh g−1 over 800 charge/discharged cycles. However, cells with highly crystalline NaxCoO2 cathodes revealed a significant capacity loss down to 9 mAh g−1 and a pronounced increase of the overpotential from 100 to 890 mV during the 200 cycles. The observed loss in capacity can be attributed to a strong increase of the interface resistance between the highly crystalline annealed NaxCoO2 films and Nasicon during cycling.
000863231 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863231 588__ $$aDataset connected to CrossRef
000863231 7001_ $$0P:(DE-HGF)0$$aGuhl, C.$$b1
000863231 7001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b2$$ufzj
000863231 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b3
000863231 7001_ $$0P:(DE-HGF)0$$aAlff, L.$$b4
000863231 7001_ $$00000-0003-4601-4769$$aHausbrand, R.$$b5
000863231 7001_ $$00000-0003-1891-3011$$aKomissinskiy, P.$$b6
000863231 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/2.0491903jes$$gVol. 166, no. 3, p. A5328 - A5332$$n3$$pA5328 - A5332$$tJournal of the Electrochemical Society$$v166$$x1945-7111$$y2019
000863231 8564_ $$uhttps://juser.fz-juelich.de/record/863231/files/JElectrochemSoc_166_2019_A5328_Kehne.pdf$$yOpenAccess
000863231 8564_ $$uhttps://juser.fz-juelich.de/record/863231/files/JElectrochemSoc_166_2019_A5328_Kehne.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863231 909CO $$ooai:juser.fz-juelich.de:863231$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b2$$kFZJ
000863231 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b3$$kFZJ
000863231 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863231 9141_ $$y2019
000863231 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863231 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863231 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000863231 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2017
000863231 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863231 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863231 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863231 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863231 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863231 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863231 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863231 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863231 920__ $$lyes
000863231 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863231 9801_ $$aFullTexts
000863231 980__ $$ajournal
000863231 980__ $$aVDB
000863231 980__ $$aUNRESTRICTED
000863231 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863231 981__ $$aI:(DE-Juel1)IMD-2-20101013