Home > Publications database > Electrochemical Performance of All-Solid-State Sodium-Ion Model Cells with Crystalline Na x CoO 2 Thin-Film Cathodes > print |
001 | 863231 | ||
005 | 20240711085706.0 | ||
024 | 7 | _ | |a 10.1149/2.0491903jes |2 doi |
024 | 7 | _ | |a 0013-4651 |2 ISSN |
024 | 7 | _ | |a 0096-4743 |2 ISSN |
024 | 7 | _ | |a 0096-4786 |2 ISSN |
024 | 7 | _ | |a 1945-6859 |2 ISSN |
024 | 7 | _ | |a 1945-7111 |2 ISSN |
024 | 7 | _ | |a 2002-2015 |2 ISSN |
024 | 7 | _ | |a 2156-7395 |2 ISSN |
024 | 7 | _ | |a 2128/22368 |2 Handle |
024 | 7 | _ | |a WOS:000455866100001 |2 WOS |
037 | _ | _ | |a FZJ-2019-03321 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Kehne, P. |0 0000-0002-2760-8337 |b 0 |e Corresponding author |
245 | _ | _ | |a Electrochemical Performance of All-Solid-State Sodium-Ion Model Cells with Crystalline Na x CoO 2 Thin-Film Cathodes |
260 | _ | _ | |a Pennington, NJ |c 2019 |b Electrochemical Soc. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1561467510_2442 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a A common way to improve the electrochemical performance of the NaxCoO2 thin-film cathodes is to increase their crystallinity. Here we present our study of the electrochemical performance of all-solid-state sodium ion batteries with NaxCoO2 thin-film cathodes having two different degrees of crystallinity tuned by their post-deposition annealing at 700°C. The NaxCoO2 cathode thin-films were grown by pulsed laser deposition onto a bulk Na3.4Sc0.4Zr1.6(SiO4)2(PO4) (Nasicon) solid electrolyte substrates and assembled with sodium metal into a Swagelok battery cells. Cells with the low-crystalline NaxCoO2 cathodes show discharge capacities of up to 124 mAh g−1 over 800 charge/discharged cycles. However, cells with highly crystalline NaxCoO2 cathodes revealed a significant capacity loss down to 9 mAh g−1 and a pronounced increase of the overpotential from 100 to 890 mV during the 200 cycles. The observed loss in capacity can be attributed to a strong increase of the interface resistance between the highly crystalline annealed NaxCoO2 films and Nasicon during cycling. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Guhl, C. |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Ma, Qianli |0 P:(DE-Juel1)129628 |b 2 |u fzj |
700 | 1 | _ | |a Tietz, F. |0 P:(DE-Juel1)129667 |b 3 |
700 | 1 | _ | |a Alff, L. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Hausbrand, R. |0 0000-0003-4601-4769 |b 5 |
700 | 1 | _ | |a Komissinskiy, P. |0 0000-0003-1891-3011 |b 6 |
773 | _ | _ | |a 10.1149/2.0491903jes |g Vol. 166, no. 3, p. A5328 - A5332 |0 PERI:(DE-600)2002179-3 |n 3 |p A5328 - A5332 |t Journal of the Electrochemical Society |v 166 |y 2019 |x 1945-7111 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/863231/files/JElectrochemSoc_166_2019_A5328_Kehne.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/863231/files/JElectrochemSoc_166_2019_A5328_Kehne.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:863231 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129628 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)129667 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J ELECTROCHEM SOC : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|