000863239 001__ 863239
000863239 005__ 20240711085549.0
000863239 0247_ $$2doi$$a10.1039/C9TA00048H
000863239 0247_ $$2ISSN$$a2050-7488
000863239 0247_ $$2ISSN$$a2050-7496
000863239 0247_ $$2WOS$$aWOS:000463819400048
000863239 037__ $$aFZJ-2019-03329
000863239 082__ $$a530
000863239 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author
000863239 245__ $$aRoom temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm −1 and its primary applications in symmetric battery cells
000863239 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2019
000863239 3367_ $$2DRIVER$$aarticle
000863239 3367_ $$2DataCite$$aOutput Types/Journal article
000863239 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561464591_2442
000863239 3367_ $$2BibTeX$$aARTICLE
000863239 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863239 3367_ $$00$$2EndNote$$aJournal Article
000863239 520__ $$aThe lack of suitable candidate electrolyte materials for practical application limits the development of all-solid-state Na-ion batteries. Na3+xZr2Si2+xP1−xO12 was the very first series of NASICONs discovered some 40 years ago; however, separation of bulk conductivity from total conductivity at room temperature is still problematic. It has been suggested that the effective Na-ion conductivity is ∼10−4 S cm−1 at room temperature for Na3+xZr2Si2+xP1−xO12 ceramics; however using a solution-assisted solid-state reaction for preparation of Na3+xZr2Si2+xP1−xO12, a total conductivity of 5 × 10−3 S cm−1 was achieved for Na3.4Zr2Si2.4P0.6O12 at 25 °C, higher than the values previously reported for polycrystalline Na-ion conductors. A bulk conductivity of 1.5 × 10−2 S cm−1 was revealed by high frequency impedance spectroscopy (up to 3 GHz) and verified by low temperature impedance spectroscopy (down to −100 °C) for Na3.4Zr2Si2.4P0.6O12 at 25 °C, indicating further the potential of increasing the related total conductivity. A Na/Na3.4Zr2Si2.4P0.6O12/Na symmetric cell showed low interface resistance and high cycling stability at room temperature. A full-ceramic cell was fabricated and tested at 28 °C with good cycling performance.
000863239 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863239 588__ $$aDataset connected to CrossRef
000863239 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1
000863239 7001_ $$0P:(DE-Juel1)145420$$aWei, Xian-Kui$$b2
000863239 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3$$ufzj
000863239 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b4
000863239 7001_ $$00000-0002-8394-3359$$aIrvine, John T. S.$$b5
000863239 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C9TA00048H$$gVol. 7, no. 13, p. 7766 - 7776$$n13$$p7766 - 7776$$tJournal of materials chemistry / A Materials for energy and sustainability A$$v7$$x2050-7496$$y2019
000863239 8564_ $$uhttps://juser.fz-juelich.de/record/863239/files/c9ta00048h.pdf$$yRestricted
000863239 8564_ $$uhttps://juser.fz-juelich.de/record/863239/files/c9ta00048h.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863239 909CO $$ooai:juser.fz-juelich.de:863239$$pVDB
000863239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ
000863239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ
000863239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b2$$kFZJ
000863239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000863239 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
000863239 9101_ $$0I:(DE-HGF)0$$60000-0002-8394-3359$$aExternal Institute$$b5$$kExtern
000863239 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863239 9141_ $$y2019
000863239 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000863239 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863239 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2017
000863239 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863239 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863239 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863239 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863239 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863239 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863239 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863239 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863239 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2017
000863239 920__ $$lyes
000863239 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863239 980__ $$ajournal
000863239 980__ $$aVDB
000863239 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863239 980__ $$aUNRESTRICTED
000863239 981__ $$aI:(DE-Juel1)IMD-2-20101013