001     863247
005     20240709082058.0
024 7 _ |a 10.1016/j.ssi.2019.05.016
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a 2128/22364
|2 Handle
024 7 _ |a WOS:000482515900021
|2 WOS
037 _ _ |a FZJ-2019-03337
082 _ _ |a 530
100 1 _ |a Davaasuren, Bambar
|0 P:(DE-Juel1)174080
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Impact of sintering temperature on phase formation, microstructure, crystallinity and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1561465064_2442
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A systematic study was carried out to explore the impact of sintering temperature on the densification, phase formation, microstructure, crystallinity, and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3 (LATP). There is clear evidence that a) both the total conductivity and bulk conductivity increase with increasing sintering temperature, and b) the phase purity, crystallinity and compositional homogeneity range of LATP are the key factors that influence the bulk ionic conductivity. Furthermore, the influence of a sintering aid (Li2B4O7) on the microstructure and ionic conductivity of LATP was probed. The Li2B4O7 improved the microstructural parameters of the LATP electrolyte and thus remarkably reduced the grain boundary resistance of the pristine LATP from 3500 Ω·cm to 1500 Ω·cm. The sintering aid Li2B4O7 did not influence the stoichiometry or the long-range order of LATP but rather acted as an ion-conducting bridge between the LATP grains facilitating the Li-ion transport.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 1
|u fzj
773 _ _ |a 10.1016/j.ssi.2019.05.016
|g Vol. 338, p. 144 - 152
|0 PERI:(DE-600)1500750-9
|p 144 - 152
|t Solid state ionics
|v 338
|y 2019
|x 0167-2738
856 4 _ |y Published on 2019-06-06. Available in OpenAccess from 2021-06-06.
|u https://juser.fz-juelich.de/record/863247/files/Manuscript_draft_BD_5vFT.pdf
856 4 _ |y Published on 2019-06-06. Available in OpenAccess from 2021-06-06.
|x pdfa
|u https://juser.fz-juelich.de/record/863247/files/Manuscript_draft_BD_5vFT.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863247
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)174080
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129667
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21