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Topological insulators are insulating bulk materials hosting conducting surface states. Their magnetic doping
breaks time-reversal symmetry and generates numerous interesting effects such as dissipationless transport.
Nonetheless, their dynamical properties are still poorly understood. Here, we perform a systematic investigation
of transverse spin excitations of 3d and 4d single impurities embedded in two prototypical topological insulators
(Bi2Te3 and Bi2Se3). The impurity-induced states within the bulk gap of the topological insulators are found to
have a drastic impact on the spin excitation spectra, resulting in very high lifetimes reaching up to microseconds.
An intuitive picture of the spin dynamics is obtained by mapping onto a generalized Landau-Lifshitz-Gilbert
phenomenological model. The first quantity extracted from this mapping procedure is the magnetic anisotropy
energy, which is then compared to the one provided by the magnetic force theorem. This uncovers some
difficulties encountered with the latter, which can provide erroneous results for impurities with a high density of
states at the Fermi energy. Moreover, the Gilbert damping and nutation tensors are obtained. The nutation effects
can lead to a non-negligible shift in the spin excitation resonance in the high-frequency regime. Finally, we study
the impact of the surface state on the spin dynamics, which may be severely altered due to the repositioning of
the impurity-induced state in comparison to the bulk case. Our systematic investigation of this series of magnetic
impurities sheds light on their spin dynamics within topological insulators, with implications for available and
future experimental studies.
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I. INTRODUCTION

The ever-increasing need for higher storage density ori-
ented research towards the miniaturization of magnetic mem-
ories is constricted by the superparamagnetic limit [1]. The
realization of smaller magnetic bits requires materials with a
high magnetic anisotropy energy (MAE), originating from the
relativistic spin-orbit interaction. The extreme limit for high-
density magnetic storage consists of a single atomic bit [2],
for which quantum effects can be predominant. Therefore,
a deep fundamental understanding underlying the stability
mechanisms is crucial for future technological applications.
Moreover, the manipulation of these magnetic units relies on
external time-dependent fields, with their dynamical proper-
ties being of prime relevance as well.

The standard tool for probing the dynamical magnetic
properties (i.e., spin excitations) of single atoms is inelas-
tic scanning tunneling spectroscopy (ISTS). It was em-
ployed to investigate magnetic adatoms on nonmagnetic sur-
faces [3–12]. The spin excitation signature in the differential
conductance ( dI

dV , with I being the tunneling current and V
being the applied voltage) consists of steplike features at the
excitation frequencies. They are determined by the applied
external magnetic field and the MAE, which can also be ac-
cessed via other experimental methods such as x-ray magnetic
circular dichroism [13,14]. The nature of both the substrate
and the adsorbate plays a major role in the determination of
the resonance frequency and lifetime of the excitation.
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Several theoretical investigations of spin excitations of
magnetic atoms deposited on nonmagnetic surfaces have been
performed. In the limit of weak coupling (i.e., low hybridiza-
tion) between the adsorbate and the substrate, the ISTS spectra
can be interpreted employing a Heisenberg model with local-
ized atomic moments possessing an integer (or half-integer)
spin. Such a scenario occurs when the substrate is of insulating
or semiconducting nature [6,15,16]. When the coupling to the
substrate is strong, the hybridization effects must be taken
into account and a more accurate description of the electronic
structure is required. This was achieved using real-space first-
principles calculations in the framework of the Korringa-
Kohn-Rostoker Green’s function (KKR-GF) method, which
was extended to the dynamical regime [17–20] relying on
time-dependent density functional theory (TD-DFT) in its
linear response formulation [21].

Topological insulators are intermediate between metallic
and insulating substrates, consisting of bulk insulators hosting
conducting topologically protected surface states [22–24].
Magnetic impurities deposited on topological insulators
were also investigated by means of scanning tunneling mi-
croscopy [13,25–28]. For instance, it was found in Ref. [27]
that Fe impurities deposited on Bi2Te3 prefer to substitute a
subsurface Bi atom after room-temperature annealing. It was
also shown in Ref. [13] that, at low deposition temperature,
Fe on Bi2Te3 may occupy hcp and fcc hollow sites while
displaying an out-of-plane anisotropy. Nonetheless, an exper-
imental analysis of their dynamical properties via ISTS, for
example, is so far lacking. Furthermore, the magnetic doping
of topological insulators breaks time-reversal symmetry and
generates exotic phenomena such as the quantum anomalous
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Hall effect [29,30]. In this case, one also expects a rather
low but finite hybridization (with the surface state) in the
region of the bulk gap, leading to unconventional dynamical
behavior. For instance, the magnetization dynamics of a fer-
romagnet coupled to the surface state of a three-dimensional
(3D) topological insulator has already been investigated, and
an anomalous behavior in the ferromagnetic resonance was
predicted [31]. Other studies with a similar focus were done
in Refs. [32–35]. Furthermore, arrays of magnetic adatoms
interacting with a topological surface state were considered in
Ref. [36], with the surface magnons following a linear disper-
sion, very unusual for a ferromagnetic ground state. Moreover,
the electron-spin resonance of single Gd ions embedded in
Bi2Se3 was examined in Ref. [37]. The temperature depen-
dence of the g factor was investigated and the coexistence of a
metallic and an insulating phase (dual character) was reported.

In this paper, we systematically investigate the spin dynam-
ics of 3d and 4d single impurities embedded in prototypical
3D topological insulators, namely, Bi2Te3 and Bi2Se3. Thin-
film (with a topological surface state) and inversion symmetric
bulk (insulating) geometries are considered. For an accurate
description of the dynamical electronic properties of these im-
purities, we employ linear response TD-DFT as implemented
in the KKR-GF method [17,18,20]. We compute the dy-
namical transverse magnetic susceptibility, which represents
the magnetic response of the system to frequency-dependent
transverse magnetic fields. It incorporates the density of spin
excitations and can be connected to ISTS measurements [38].
The spin excitation spectra we obtain reveal astonishing
results, with lifetimes spanning six orders of magnitude:
from picoseconds to microseconds for Fe and Mn impurities
embedded in Bi2Se3, respectively. These contrasting values
of the lifetimes correlate with the presence (or absence) of
in-gap states in the impurity local density of states (LDOS)
near the Fermi energy [39]. Next we gain further insight
on the magnetization dynamics by mapping the transverse
dynamical magnetic susceptibility to the phenomenological
Landau-Lifshitz-Gilbert (LLG) equation [40]. A generalized
formulation of the LLG equation including tensorial Gilbert
damping G and nutation I is employed [41]. The static limit
of the response function via the LLG formulation was used
to extract the MAE. The latter is then compared to the values
obtained with conventional ground-state methods relying on
the magnetic force theorem: band energy differences [42–44]
and torque method [45]. A connection between the MAE
obtained within the linear response theory and the torque
method using small deviations is established. Moreover, for
elements with high resonance frequencies, the signature of the
nutation is observed as a resonance shift, proving that inertial
effects are relevant at such high precession rates [41,46,47].
Finally, we compare the LLG parameters obtained when the
3d and 4d impurities are embedded in the bulk and at the
surface of Bi2Te3. Our results show that the modification of
the in-gap state due to the presence of the surface state may
play a major role in the dynamics depending on the nature of
the impurity.

This paper is structured as follows. Section II is dedicated
to the description of the linear response TD-DFT approach
employed to compute the spin excitation spectra. It also
includes the mapping of the transverse dynamical magnetic

susceptibility into the generalized phenomenological LLG
model and the different methods used to compute the MAE.
Section III is devoted to the analysis of the electronic structure
and the ground-state properties of 3d and 4d transition-metal
impurities embedded in Bi2Te3 and Bi2Se3. In Sec. IV, we
present the MAE for the considered magnetic impurities
and explain the discrepancies between the different methods.
Section V contains a detailed discussion of the spin excitation
spectra of 3d and 4d impurities embedded at the surface
of both Bi2Te3 and Bi2Se3. The fitted LLG parameters are
given as well, which are interpreted in terms of the impurity
LDOS. Finally, in Sec. VI, the dynamical properties of the 3d
impurities in the bulk and at the surface are compared. The
contribution of the topological surface state for each impurity
is then analyzed.

II. THEORETICAL DESCRIPTION

The description of the spin excitations of the investigated
systems relies on linear response TD-DFT [17,20,21,48]. The
central quantity in our approach is the dynamical magnetic
susceptibility, which displays poles at the excitation energies
of the system. The calculations are performed in two steps:
First we determine the ground state of the system using
conventional DFT calculations; then, we compute the dynam-
ical response of the system to an external perturbing time-
dependent magnetic field. To gain further physical insights
into the results, we also describe how to map the results
of TD-DFT calculations onto an extended phenomenological
LLG model. Lastly, we compare the MAE obtained from the
dynamical calculations with the ones computed from DFT
calculations in different ways.

A. Density functional theory

The ground-state DFT simulations are done using the
KKR-GF method [49,50] in the atomic sphere approximation
including the full charge density, and the exchange-correlation
potential is taken in the local spin-density approximation [51].
The spin-orbit interaction is included in a self-consistent
fashion within the scalar relativistic approximation. Since
we investigate impurities embedded in periodic crystals, we
perform two types of calculations. The ground state of the
clean host is determined first. Then, the impurities are self-
consistently embedded in its crystalline structure. The host
crystals investigated in this paper consist of Bi2Te3 and
Bi2Se3. The bulk unit cell contains five atoms (one quintuple
layer) in a rhombohedral structure (space group R3̄m) [52].
The corresponding self-consistent calculations employ a 30 ×
30 × 30 k mesh. The surface is simulated using a slab con-
taining six quintuple layers and 60 × 60 k points. For the
impurity calculations, we consider a real-space cluster that
contains 102 sites in total (24 Bi atoms, 31 Te (Se) atoms, and
47 vacuum sites). The magnetic impurities are substituting
a Bi atom, which is located at the subsurface layer for the
thin-film case [39]. Both experiment [27] and first-principles
simulations [53] show that this position is thermodynamically
stable for Fe in Bi2Te3. In addition to that, the nearest Te
(Se) neighbors may relax their position getting closer to the
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impurity [54]. These relaxations are not taken into account in
the current paper.

B. Time-dependent density functional theory

The dynamical magnetic susceptibility encodes the spin
excitation spectra. It describes the linear change in the spin
magnetization density δ �M(�r, ω) upon the application of a
frequency-dependent external magnetic field δ�B(�r, ω) as

δMα (�r, ω) =
∑

γ

∫
d�r ′ χαγ (�r,�r ′, ω) δBγ (�r ′, ω), (1)

where α, γ ∈ {x, y, z}. For a specific direction of �M(�r), the
susceptibility tensor can be divided into longitudinal and
transversal blocks. In the presence of the spin-orbit inter-
action or magnetic noncollinearity, the two blocks are cou-
pled. However, for the systems that we analyze in this pa-
per, the coupling is negligible and we focus only on the
transversal magnetic response of systems (the xy block when
the magnetic moment is along the z direction). Within TD-
DFT, the magnetic susceptibility χαβ (�r,�r ′, ω) is determined
starting from the noninteracting magnetic susceptibility of
the Kohn-Sham system, χKS

αβ (�r,�r ′, ω), using a Dyson-like
equation [17,20,21]:

χαβ (�r,�r ′, ω) = χKS
αβ (�r,�r ′, ω) +

∑
γμ=x,y

∫
d�r1 d�r2

×χKS
αγ (�r,�r1, ω) Kxc

γμ(�r1,�r2, ω)

×χμβ (�r2,�r ′, ω), (2)

where α, β, γ , μ ∈ {x, y} and Kxc
γμ(�r,�r ′, ω) is the transverse

part of the exchange-correlation kernel, with Kxc
γμ(�r,�r ′, ω) =

δγμKxc
⊥ (�r,�r ′, ω). In the framework of the adiabatic local-

density approximation (LDA) [21,55], Kxc
⊥ (�r,�r ′, ω) = δ(�r −

�r ′) 2Bxc(�r )/M(�r ) is frequency independent and local in
space. The dynamical Kohn-Sham susceptibility is evaluated
from the single-particle Green’s function G(�r,�r ′, ε) [defined
in Eq. (B1)] as

χKS
αβ (�r,�r ′, ω) = − 1

π

∫ εF

−∞
dε Tr {σα G(�r,�r ′, ε + ω + i0)

× σβ Im G(�r ′,�r, ε) + σα Im G(�r,�r ′, ε)

× σβ G(�r ′,�r, ε − ω − i0)}. (3)

Since the frequency range of interest is relatively low [20,48],
the frequency dependence of the Kohn-Sham susceptibility is
incorporated via a Taylor expansion as

χKS
αβ (�r,�r ′, ω) ≈ χKS

αβ (�r,�r ′, 0) + ω
dχKS

αβ (�r,�r ′, ω)

dω

∣∣∣∣∣
ω=0

+ ω2

2

d2χKS
αβ (�r,�r ′, ω)

dω2

∣∣∣∣∣
ω=0

, (4)

χKS
αβ (�r,�r ′, 0) being the static Kohn-Sham susceptibility.

Moreover, for a system with uniaxial symmetry, the transver-
sal excitations can be summarized in the spin-flip magnetic
susceptibility [20]:

χ+−(�r,�r ′, ω) = 1
4 [χxx(�r,�r ′, ω) + iχxy(�r,�r ′, ω)

− iχyx(�r,�r ′, ω) + χyy(�r,�r ′, ω)]. (5)

Further details on the computation of the Kohn-Sham sus-
ceptibility and exchange-correlation kernel can be found in
Refs. [17,20,48]. Finally, we can obtain an intuitive picture
of the spin excitations via the spatial average of χ+−(�r,�r ′, ω)
over a suitably defined volume enclosing the magnetic impu-
rity:

χ+−(ω) =
∫

V
d�r

∫
V
d�r ′ χ+−(�r,�r ′, ω), (6)

which corresponds to its net response to a uniform external
magnetic field [20].

C. Generalized Landau-Lifshitz-Gilbert equation

In order to develop a more intuitive picture of the magne-
tization dynamics, we make a connection with a phenomeno-
logical model for the magnetization dynamics. We consider a
generalized formulation of the LLG equation [40] including
a tensorial Gilbert damping G, as well as a nutation tensor I
accounting for inertial effects [41,56–58]. The latter can be
important at relatively high frequencies [41,46,47]. The equa-
tion of motion of the magnetic moment �M(t ) = ∫

V d�r �M(�r, t )
then reads

d �M
dt

= −γ �M ×
(

�Beff + G · d �M
dt

+ I · d2 �M
dt2

)
. (7)

Here γ is the gyromagnetic ratio (γ = 2 in atomic units) and
�Beff is the effective magnetic field acting on the magnetic
moment. �Beff can be split into two contributions: �Beff = �Bext +
�Ba, with �Bext being the external magnetic field, and �Ba is an
intrinsic anisotropy field which arises due to the spin-orbit
interaction [20]. The relation between �Ba and the MAE K is
detailed in Appendix A.

To establish a connection between the LLG equation and
the transverse magnetic susceptibility computed using Eq. (2),
we first consider that the local equilibrium direction is along
the z axis and apply a small time-dependent transverse mag-
netic field:

�Bext(t ) = δBx(t )�ex + δBy(t )�ey, with δBx(t ), δBy(t ) � |�Ba|.
(8)

Then, we linearize Eq. (7) with respect to transverse compo-
nents of �Bext(t ) and �M(t ), which becomes, in the frequency
domain,

∑
β=x,y

(
Ba

z

M
δαβ + iω

γ M
εαβ + iω Gαβ + ω2 Iαβ

)
δMβ (ω)

= δBα (ω), (9)

with εαβ being the two-dimensional Levi-Civita symbol
(εxy = +1) and δMβ (ω) the β component of the frequency-
dependent magnetization �M(ω). The preceding equation com-
bined with Eq. (1) provides a direct connection between
χαβ (ω) obtained within TD-DFT and the phenomenological
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LLG parameters:

[χxx(ω)]−1 = −2KSusc

M2
− iω

γ M
Gs

‖ − ω2

γ M
Is

‖,

[χxy(ω)]−1 = iω

γ M
(1 + Ga

‖ ) + ω2

γ M
Ia

‖ , (10)

where KSusc is the MAE, and the subscript indicates that
this quantity is extracted from the static magnetic suscepti-
bility obtained from the TD-DFT calculations. Gs

‖ (Is
‖) and

Ga
‖ (Ia

‖ ) are the symmetric and antisymmetric components of
the Gilbert damping (nutation) tensor, respectively. A more
detailed description of the Gilbert damping and nutation ten-
sors for the uniaxial symmetry that applies to the systems
under consideration is provided in Appendix A. The previous
equation shows in a clear fashion that the static limit of χxx(ω)
is inversely proportional to the anisotropy. In the limit of small
nutation, the MAE is connected to the resonance frequency
ωLLG

res via (see Appendix A)

ωLLG
res = − γ√

1 + (Gs
‖)2 + 2Ga

‖ + (Ga
‖ )2

2KSusc

Ms
. (11)

This is the resonance frequency for precessional motion about
the z axis. Note that ωLLG

res is renormalized by Gs
‖ and Ga

‖ ,
accounting for the damping of the precession and the renor-
malization of γ , respectively [see Eq. (A7)].

D. Magnetocrystalline anisotropy

In the absence of external magnetic fields, the gap open-
ing in the spin excitation spectrum is uniquely due to the
MAE (i.e., anisotropy field) breaking the SU(2) rotational
symmetry [20]. The expression of ωLLG

res in the LLG model
provided in Eq. (11) shows that the resonance frequency is
proportional to K, which can also be computed from ground-
state DFT calculations. Here, we discuss two different ground-
state methods to compute this quantity relying on the magnetic
force theorem [42–44,59] and establish a connection with the
MAE obtained using linear response theory, Ksusc.

For uniaxial systems, the energy depends on the direc-
tion of the magnetic moment in a simple way: E (θ ) ∼
K cos2 θ , where θ is the angle that the magnetic mo-
ment makes with the z axis, i.e., �M/| �M| = n̂(θ, ϕ) =
(cos ϕ sin θ, sin ϕ sin θ, cos θ ). To lowest order in the phe-
nomenological expansion, the axial symmetry renders the en-
ergy independent of the azimuthal angle ϕ. It follows that the
magnitude of the MAE, K, can be obtained from total-energy
differences for two different orientations of the magnetization
(out of plane and in plane). However, as K is at most a few
meV’s, this approach requires very accurate total energies,
which is computationally demanding.

Alternatively, one can use the magnetic force theorem,
which states that, if the changes in the charge and magnetiza-
tion densities accompanying the rotation of the spin moment
are small, the total-energy difference can be replaced by the
band energy difference [42–44]:

KBand = EBand(0◦) − EBand(90◦), (12)

where EBand(θ ) is the band energy (sum of Kohn-Sham energy
eigenvalues) of the system when the spin moment makes an

angle θ with the z axis:

EBand(θ ) =
∫ εF

−∞
dε (ε − εF) ρ(ε; θ ). (13)

It contains the effect of the orientation of the magnetic
moment through the manner in which the density of states
ρ(ε; θ ) is modified upon its rotation. This quantity is evaluated
with a single non-self-consistent calculation, by orienting the
exchange-correlation magnetic field in the desired direction,
�Bxc(�r ) = Bxc(�r ) n̂(θ, ϕ) (rigid spin approximation [60]).

The MAE can also be evaluated from the magnetic torque,
which corresponds to the first derivative of EBand(θ ) with
respect to the magnetic moment direction. Using the Hellman-
Feynman theorem, the torque reads [45,61,62]

Tθ = ∂EBand

∂θ

=
∫

d�r Bxc(�r )
∂ n̂(θ, ϕ)

∂θ
· �M(�r ; θ ). (14)

As for the band energy calculations, the torque is also obtained
from a single non-self-consistent calculation, under the same
approximations. It is nonvanishing if the output spin magneti-
zation density �M(�r ; θ ) is not collinear with the input magnetic
moment direction. Considering the expected form of the MAE
for uniaxial symmetry, we should find

Tθ = −KTorque sin(2θ ). (15)

In practice, the torque can be evaluated at different angles
θ . In this paper, two deviation angles have been considered:
a large deviation angle with θ = 45◦, as done in Ref. [45],
and a small one near self-consistency, θ = 5◦. For such small
deviations, one can connect KTorque to the value of the MAE
obtained from the magnetic susceptibility, KSusc. It is shown
in Appendix B that, when considering a small rotation angle
θ and a constant magnitude of the exchange-correlation spin
splitting (frozen potential approximation),

KSusc = KTorque

1 − 4χKS+−(0)KSusc

M2
z

∼ KTorque

1 + Ba

Bxc

. (16)

The previous expression shows that Ksusc corresponds to the
KTorque (evaluated for a small deviation angle) renormalized
by a prefactor (1 + Ba

Bxc
)−1. In fact, this result is similar to the

renormalization observed for magnetic interactions computed
from the magnetic susceptibility [63,64]. For the systems of
interest (3d and 4d transition-metal impurities), Ba is in the
meV range while Bxc is in the order of eV. Therefore, one
expects small corrections due to this renormalization, and the
two quantities should be in good agreement.

III. ELECTRONIC STRUCTURE OF 3d AND 4d
IMPURITIES IN Bi2Te3 AND Bi2Se3

In this section, we briefly recap the discussion of the
electronic structure and ground-state properties of 3d im-
purities embedded in the Bi2Te3 (Bi2Se3) surface already
addressed in Ref. [39]. Furthermore, we also consider 4d
impurities which have a stronger hybridization with the host
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FIG. 1. Spin-resolved LDOS for 3d impurities (Cr, Mn, Fe, and Co) and 4d impurities (Nb, Mo, Tc, Ru, and Pd) embedded in a Bi2Te3

(Bi2Se3) surface. (a) 3d in Bi2Te3, (b) 4d in Bi2Te3, (c) 3d in Bi2Se3, and (d) 4d in Bi2Se3. The full lines represent the majority-spin states,
with dashed lines for the minority-spin ones. The energies are given with respect to the Fermi energy εF and the energy window associated
with the bulk band gap is highlighted with light blue color.

electrons compared to the 3d ones. This information will be
employed for the analysis of their dynamical properties, such
as the Gilbert damping. The LDOS of 3d and 4d magnetic
impurities embedded into Bi2Te3 and Bi2Se3(111) surfaces
are shown in Fig. 1. The bulk band gap (�gap) is depicted
in light blue, with �gap ≈ 0.25 eV for Bi2Te3 and �gap ≈
0.35 eV for Bi2Se3. These values are in line with the results
obtained using LDA+GW [65] and with the experimental
data [66,67]. We consider that the impurity spin moment is
oriented perpendicularly to the surface (i.e., along the [111]

direction). The full lines represent the majority-spin channel
(↑), while the dashed lines account for the minority-spin
channel (↓). All the 3d and 4d impurities donate electrons
to the host atoms (see Table I). It can also be seen in Fig. 1
that the spin splitting of the 4d impurities is weaker compared
to the 3d ones, resulting in smaller spin moments, as listed in
Table I. This is attributed to the Stoner parameter being larger
for 3d than for 4d elements [68].

All 3d elements except Cr display a completely filled
majority-spin d resonance. Mn and Cr have a nearly empty

TABLE I. Ground-state properties of 3d and 4d impurities embedded in the Bi2Te3 and Bi2Se3 surfaces including the valence charge on
the impurity Q, spin moment Ms, and orbital moment Ml. The spin and orbital moments are given in units of μB.

Cr Mn Fe Co Nb Mo Tc Ru Pd

Q Bi2Te3 5.154 6.160 7.282 8.448 3.488 4.717 5.892 7.147 9.421
Bi2Se3 4.841 5.863 6.963 8.136 3.077 4.316 5.474 6.734 9.041

Ms Bi2Te3 3.843 4.412 3.395 2.108 1.097 2.678 2.493 0.000 0.000
Bi2Se3 3.671 4.421 3.482 2.231 0.906 2.574 2.534 0.564 0.578

Ml Bi2Te3 0.065 0.050 0.260 0.883 –0.143 –0.004 0.202 0.000 0.000
Bi2Se3 0.008 0.024 0.144 0.942 –0.048 –0.093 0.079 0.378 0.135
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minority-spin d resonance, resulting in a large spin moment
and a small orbital moment (Ml). Fe and Co have a partially
filled minority-spin d resonance, leading to higher values for
Ml, as shown in Table I. The LDOS also reveals impurity-
induced in-gap states near the Fermi energy, which arise
from the hybridization with the bulk sp states of Bi2Te3

(Bi2Se3) [39]. When replacing the Bi2Te3 host by Bi2Se3,
the valence charge and the spin moment are mildly affected,
in contrast to the orbital moments which are considerably
altered [39].

For 4d impurities, both minority- and majority-spin d
resonances are partially occupied due to a weak spin splitting.
The LDOS is broader and flatter in comparison with the
3d ones, indicating a stronger hybridization with the host
material, as the 4d orbitals are spatially more extended than
the 3d ones, and so overlap more with the orbitals of the
host. In the Bi2Te3 host, Nb, Mo, and Tc are found to be
magnetic, while Ru, Rh, and Pd impurities were found to be
nonmagnetic. The analysis of the paramagnetic LDOS (not
shown here) reveals that, when moving in the periodic table
from Tc towards Pd (i.e., adding electrons), the 4d peak is
shifted to lower energies. This leads to a drastic decrease of
the LDOS at εF and makes the Stoner criterion unfulfilled. Nb
has a less than half-filled d shell, inducing an orbital moment
antiparallel to its spin moment, as shown in Table I. For
Mo and Tc, a half-filled d shell results in the highest values
for Ms between the 4d elements. These observations are in
qualitative agreement with Hund’s rules [69]. In-gap states are
also observed near εF, as for the 3d impurities. Interestingly,
in the Bi2Se3 host, Ru and Pd acquire a magnetic moment,
while Rh remains nonmagnetic. Higher values of the LDOS
at εF compared to the Bi2Te3 host now satisfy the Stoner
criterion for these elements. Pd is a rather peculiar case, since
the increase of the LDOS at εF is related to the presence of an
in-gap state in the minority-spin LDOS, as shown in Fig. 1(d).

The electronic structure, especially in the vicinity of the
Fermi energy, governs the behavior of the MAE and spin
excitations of the system. In particular, the presence of

d resonances near εF may result in inaccuracies in the com-
putation of the MAE. Together with in-gap states, it can also
induce high values of the Gilbert damping, as discussed in the
next sections.

IV. MAGNETOCRYSTALLINE ANISOTROPY OF 3d
AND 4d IMPURITIES IN Bi2Te3 AND Bi2Se3

We now investigate the MAE employing the different
methods discussed in Sec. II D. In our convention, a positive
(negative) MAE stands for an in-plane (out-of-plane) easy
axis. In Fig. 2(a), we show the evolution of the MAE for
3d impurities embedded in Bi2Te3 and Bi2Se3, respectively.
For every impurity, all the methods predict the same easy
axis. In the Bi2Te3 host, Cr and Fe present an in-plane
magnetic anisotropy, while Mn and Co favor an out-of-plane
orientation. The trend is mostly accounted for by Bruno’s
formula [70], where the MAE is given by the anisotropy of
the orbital moment (Ml ): K ∝ ζ 2 (Mx

l − Mz
l ), with ζ being

the spin-orbit interaction strength. Mn displays a small MAE,
as it has a small orbital moment, while the large anisotropy
energies obtained for Fe and Co stem both from their large
orbital moments and their substantial dependence on the spin
orientation. However, the results obtained for the MAE of Cr
do not agree with the predictions of Bruno’s formula, since
the MAE reaches ∼1 meV, despite a rather small anisotropy
in the orbital moment of the adatom (see Table II). For the
Bi2Se3 host, the anisotropy follows very similar trends in
comparison with the Bi2Te3 case. Nonetheless, the easy axis
of Cr switches from in plane to out of plane, while the MAE
of Fe and Co present a noticeable increase, as shown in
Fig. 2(a). These changes in the MAE are attributed to the
modification of the ground-state properties, particularly the
orbital moments (as listed in Table II), according to Bruno’s
formula.

In Fig. 2(b), we show the MAE of 4d impurities embedded
in Bi2Te3 and Bi2Se3 computed with the different approaches
outlined in Sec. II D. For the Bi2Te3 case, all the impurities
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FIG. 2. Comparison of the MAE for (a) 3d impurities and (b) 4d impurities, embedded in a Bi2Te3 and a Bi2Se3 surface. The black curve is
obtained using the band energy differences [KBand, Eq. (12)] (with a 90◦ rotation of the spin moment). The red curve shows the MAE computed
from the static part of the magnetic susceptibility [KSusc, Eq. (10)]. The green and blue curves are obtained using the torque method at 45◦ and
5◦ [KTorque(θ ), Eq. (14)], respectively. Most of the impurities display an in-plane magnetic anisotropy (K > 0).
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TABLE II. Change in the valence charge of the impurity �Qzx , spin moment �Mzx
s , and orbital moment �Mzx

l for 3d and 4d impurities
embedded in a Bi2Te3 and a Bi2Se3 surface, using the frozen potential approximation. For Fe and Co, �Qzx and �Mzx

s are relatively large,
invalidating the use of the magnetic force theorem to compute the MAE.

Cr Mn Fe Co Nb Mo Tc Ru Pd

�Qzx Bi2Te3 –0.016 0.001 –0.224 –0.484 0.018 0.002 –0.287 0.000 0.000
Bi2Se3 –0.001 0.000 –0.320 –0.583 –0.004 0.001 –0.319 –0.347 0.000

�Mzx
s Bi2Te3 –0.016 –0.001 0.224 0.483 0.015 –0.000 0.288 0.000 0.000

Bi2Se3 –0.001 –0.000 0.320 0.582 –0.009 0.001 0.286 0.320 –0.003
�Mzx

l Bi2Te3 0.019 0.003 –0.323 0.484 –0.081 –0.002 –0.188 0.000 0.000
Bi2Se3 0.003 0.002 –0.493 0.487 –0.261 0.003 –0.284 0.285 0.008

(Nb, Mo, and Tc) display an in-plane easy axis. Nb displays
a large MAE, while Mo and Tc have a rather small one [with
the exception of KTorque(45◦) and KBand]. For Mo, the small
MAE correlates with its small orbital moment. In the Bi2Se3

host, Nb, Mo, and Tc are characterized by an in-plane easy
axis as well. Note that, due to a strong hybridization with the
host [broad LDOS in Figs. 1(b) and 1(d)], the MAE of Tc is
drastically affected by the surrounding environment. Ru and
Pd acquire a magnetic moment in Bi2Se3 displaying an out-
of-plane easy axis. Particularly, Ru displays a very large MAE
in comparison with the rest of the 4d elements.

We now focus on the reasons why different methods may
provide contrasting values for the MAE (see Fig. 2). The ori-
gin of these divergences can be traced back to the features of
the electronic structure at the impurity site. Figure 2(a) shows
that the obtained MAEs of Fe and Co can be separated in two
groups, according to the method used to compute them: one
for large angle methods, including the band energy differences
[KBand, Eq. (12)] and the torque method at 45◦ [KTorque(45◦),
Eq. (14)], and the other for small perturbations, encompassing
the torque method at 5◦ [KTorque(5◦), Eq. (14)] and linear
response theory [KSusc, Eq. (10)]. The results from the two
methods in each group are in good agreement with each
other, but the results from one group do not agree with
those from the other. This can be understood via Table II,
which lists the change in the ground-state properties of the
impurity upon 90◦ rotation of the spin moment (z → x axis),
in a frozen potential calculation. There is a large variation
in the valence charge and in the spin moment of Fe and
Co in comparison to Cr and Mn, owing to the change in
the position of the 3d peak in the minority-spin channel in
the vicinity of εF [see Figs. 1(a) and 1(c)]. This violates the
assumptions justifying the magnetic force theorem (in the
frozen potential approximation), as previously observed in
Ref. [71] for Co adatoms deposited on a Cu(111) surface.
The disagreement between the different methods for Tc and
Ru observed in Fig. 2(b) is attributed to a high occupation
at εF as well [see Figs. 1(b) and 1(d)]. An exception occurs
for Nb, where good agreement between the different methods
is observed. In this case, the high LDOS at εF is due to the
majority-spin states, which are weakly affected by the spin
rotation.

The previous analysis indicates that, if a high density of
electronic states is present at εF (Fe, Co, Tc, and Ru), a
large rotation angle may lead to large changes in the charge
density and invalidate the use of the magnetic force theorem

in combination with the frozen potential approximation. As
discussed in Sec. II D and in Appendix B, the gap in the spin
excitation spectra as measured with ISTS defined by KSusc is
very well described by KTorque(θ ) obtained with small rotation
angles (in our case, θ = 5◦).

V. SPIN EXCITATIONS OF 3d AND 4d IMPURITIES
IN Bi2Te3 AND Bi2Se3

In Sec. III, we addressed the ground-state properties of
3d and 4d impurities embedded in Bi2Te3 and Bi2Se3. Here,
we investigate their spin dynamics, relate it to the MAE
obtained in Sec. IV, and study the possibility of exciting
and manipulating these impurities with time-dependent ex-
ternal magnetic fields. We focus on the transverse spin ex-
citations encoded in the dynamical magnetic susceptibility,
which have been observed experimentally for magnetic im-
purities on nonmagnetic surfaces by means of ISTS measure-
ments [3,8,9,11,72,73]. In these experiments, the spin excita-
tions yield a step in the differential tunneling conductance at
well-defined energies.

We show in Fig. 3 the imaginary part of χ+−(ω) (i.e., the
density of states of the magnetic excitations) as a function
of the frequency of the external field for both 3d and 4d
impurities embedded in Bi2Te3 and Bi2Se3. Only the response
of the magnetic impurities is considered, since the induced
moments in the surrounding (host) atoms are rather small.
Nonetheless, their contribution is accounted for when com-
puting the transverse exchange-correlation kernel Kxc

⊥ at the
impurity site via the spin-splitting sum rule [17,20]. The LLG
parameters obtained by fitting the data to Eq. (10) are given in
Table III. As depicted in Fig. 3, Im χ+−(ω) has a Lorentzian-
like shape, and the resonance frequency (ωres) is finite even
in the absence of an external magnetic field. This resonance
arises from the MAE, which breaks the SU(2) rotational
symmetry (i.e., no Goldstone mode), as explained previously
in Sec. II D. The highest resonance frequencies are obtained
for Nb and Ru due to their strong anisotropy combined with
a small magnetic moment complying with Eq. (11), while the
smallest value of ωres is obtained for Mn impurities in Bi2Se3.
The dashed lines in Fig. 3 represent the resonance position
obtained neglecting dynamical corrections in Eq. (11), leading
to the estimate ω0

res = − 2γKSusc

Ms
(with γ = 2 and G = 0) [20].

There is a qualitative agreement between ω0
res and the reso-

nance position extracted from the spin excitation spectra, ωres,
including damping and nutation. Nonetheless, their values are
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FIG. 3. Density of states of transverse spin excitations for magnetic impurities. The panels show the results for (a) 3d and (b) 4d impurities
embedded in Bi2Te3 and for (c) 3d and (d) 4d impurities embedded in Bi2Se3. They present an almost Lorentzian shape, with resonances
located at the excitation energies of the system. The dashed lines mark the resonance frequency without dynamical corrections, ω0

res = − 2γKSusc
Ms

.
For Mn, Co, Ru, and Pd, χ−+(ω) is plotted instead, to account for their easy-plane MAE.

quantitatively different, illustrating that dynamical corrections
can be of crucial importance for an accurate determination of
the resonance frequency.

Another quantity which is strongly dependent on the nature
of the impurity and the host is the full width at half maximum
�. This quantity is proportional to the symmetric part of the
Gilbert damping tensor (Gs

‖) and provides information about
the lifetime of the excitations [74] as τ = 2

�
. This lifetime

ranges from picoseconds (comparable to lifetimes obtained at
metallic surfaces [20,74]) to very high values reaching mi-
croseconds for Mn in Bi2Se3 as shown in Fig. 4. Furthermore,
the values of Gs

‖, shown in Table III, can be interpreted in
terms of the LDOS at εF, since Gs

‖ ∝ n↓(εF) n↑(εF) [where
n↓(ε) and n↑(ε) represent the LDOS of the minority- and
majority-spin channels, respectively] [48]. The highest values
of Gs

‖ are obtained for Ru, which coincide with the lowest
excitation lifetime as displayed in Fig. 4. The antisymmetric
part of the Gilbert damping tensor Ga

‖ is also displayed in Ta-
ble III. It accounts for the renormalization of the gyromagnetic
ratio, γeff = γ

1+Ga
‖

(see Appendix A). This renormalization is

attributed to the presence of a finite LDOS at εF as well [48].
Ga

‖ is negative for Cr, Nb, and Ru, indicating an enhancement
of the gyromagnetic ratio (i.e., γeff > 2), while γeff < 2 for the

remaining impurities. Note that the spin excitation spectra of
Nb and Mo impurities in Bi2Se3 are not shown in Fig. 3, since
for these elements the Taylor expansion shown in Eq. (4) fails
due to contributions from higher-order terms in frequency
becoming too large.

The importance of the nutation can be estimated from the
real part of the denominator of Eq. (A5). Both damping and
nutation terms, Ga

‖ω and Is
‖ω

2, contribute to the resonance.

When it occurs at frequencies higher than ωc = Ga
‖

Is
‖
, ωres can

be substantially affected by the nutation. The ratio between
ωLLG

res obtained using Eq. (11) (without including nutation)
and ωc (shown in Table III) is employed to evaluate the
importance of this contribution. The symmetric parts of the
Gilbert damping and nutation tensors can be also related via
Is

‖ ∝ Gs
‖ [47,56], i.e., the damping and nutation coefficients

are proportional. The ratio ωc is fairly small for the majority of
the elements, indicating that nutation has no significant impact
on the resonant spin precession. However, for some elements
such as Nb and Tc (in Bi2Se3) the nutation leads to a shift of
∼1.3 and 0.4 meV in the resonance frequency, respectively.
Finally, the most striking element is once again Ru, with a
shift of the resonance frequency from ωLLG

res = 55.49 to ωres =
25.52 due to the nutation.
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TABLE III. LLG parameters for 3d and 4d impurities embedded in the surface of Bi2Te3 (Bi2Se3), obtained by fitting the TDDFT
dynamical susceptibility data to Eq. (10). Ms is the spin moment of the impurity. Gs

‖ is the symmetric part and Ga
‖ is the antisymmetric part of

the damping tensor, both unitless. KSusc is the MAE obtained from the magnetic susceptibility, in meV. ωLLG
res is the resonance frequency without

including nutation, in meV, as defined in Eq. (11). A large ratio between ωLLG
res and ωc = Ga

‖
Is
‖

indicates that the nutation makes a substantial

contribution to ωres, while ηc = Gs
‖

Ia
‖

provides information on the contribution of the nutation to the damping of the spin excitation. Ru and Pd in

Bi2Te3 were found to be nonmagnetic, so the corresponding entries are marked with a dash.

Cr Mn Fe Co Nb Mo Tc Ru Pd

Ms Bi2Te3 3.844 4.412 3.395 2.109 1.097 2.678 2.493 – –
Bi2Se3 3.671 4.421 3.482 2.231 0.906 2.574 2.534 0.564 0.578

Gs
‖ Bi2Te3 0.019 0.000 0.143 0.164 0.053 0.000 0.172 – –

Bi2Se3 0.037 0.000 0.112 0.012 0.003 0.000 0.512 0.852 0.094
Ga

‖ Bi2Te3 –0.245 0.109 0.286 0.274 –0.087 0.096 0.099 – –
Bi2Se3 –0.153 0.101 0.125 0.196 –0.021 0.134 0.081 –0.396 1.824

ωc Bi2Te3 77.68 3439 135.7 277.4 21.91 224.5 31.64 – –
Bi2Se3 283.2 1340 100.4 73.37 2.784 403.5 4.481 10.11 437.0

ηc Bi2Te3 7.154 298.3 65.66 38.39 30.36 752.2 234.4 – –
Bi2Se3 30.97 17820 76.31 40.19 8.703 171.5 84.93 341.8 502.5

KSusc Bi2Te3 0.959 –0.201 4.302 –6.725 4.091 0.417 0.353 – –
Bi2Se3 0.090 0.005 6.019 –5.894 5.453 0.102 3.845 –8.178 –0.431

ωLLG
res Bi2Te3 1.322 0.164 3.917 9.926 16.31 0.568 0.509 – –

Bi2Se3 0.115 0.004 6.113 8.833 24.08 0.158 5.073 55.49 1.055
ωLLG

res

ωc
Bi2Te3 0.017 0.000 0.029 0.036 0.744 0.003 0.016 – –

Bi2Se3 0.000 0.000 0.063 0.125 8.836 0.000 1.132 5.487 0.002

VI. SURFACE AND BULK SPIN DYNAMICS

We now compare different cases of 3d and 4d magnetic
impurities embedded in a surface and in a bulk inversion
symmetric Bi2Te3 (i.e., insulating phase with no topological
surface state). This enables us to disentangle the surface and
bulk contributions to the spin dynamics. The analysis of the
ground-state properties of the 3d impurities embedded in bulk
Bi2Te3 is given in Ref. [39]. The impurity-induced electronic
in-gap states are also present in 4d impurities embedded
in bulk Bi2Te3. The LLG parameters obtained in the bulk

Cr Mn Fe Co Nb Mo Tc Ru Pd

10−12

10−9

10−6

τ
(s

)

3d in Bi2Te3

4d in Bi2Te3

3d in Bi2Se3

4d in Bi2Se3

FIG. 4. Excitation lifetime of 3d and 4d magnetic impurities
embedded in Bi2Te3 and Bi2Se3. Note that the lifetime axis is on a
logarithmic scale. The highest excitation lifetime is obtained for Mn
in Bi2Se3 and reaches microseconds, while the lowest one is obtained
for Ru. Elements without data were found to be nonmagnetic in the
respective hosts.

(denoted with a subscript “b”) and at the surface (denoted
with a subscript “s”) are displayed in Table IV. With the
exception of Mn, the MAE obtained from the susceptibility
differs considerably between the bulk and surface cases—Cr
even has its easy axis switched. The overall change in the
MAE is a decrease from the surface to the bulk cases. Since
the magnetic atoms are substituting a Bi atom (which is
located in the subsurface layer for the thin-film setup), the
immediate environment of the embedded impurities is the
same in bulk and at the surface. However, for the bulk case, the
missing contribution of the surface state leads to modifications
in the electronic structure, altering the virtual bound and the
in-gap states [39]. This results in a reduction of the MAE.
The spectral weight at the Fermi level is also affected, leading
to a modification of the damping parameter [48]. For Cr, Fe,
and Tc, Gs

‖ decreases, while for Co, Nb, and Mo it increases.
Ga

‖ follows similar trends as in the surface case. Co and
Nb are the exception since Ga

‖ switches sign, resulting in a
change of γeff. The nutation is negligible for most of elements,
except for Nb and Co—for the latter, it leads to a noticeable
shift of the resonance frequency from ωLLG

res = 4.24 meV to
ωres = 4.68 meV. In summary, Co and Nb impurities are very
sensitive to the the presence of the surface state, where the
impurity states display rather different behaviors in the bulk
and at the surface leading to a different spin excitational
nature. In contrast, Mn impurities have a similar behavior
in the bulk and at the surface, showing that the topological
surface state plays a negligible role for their spin dynamics.

VII. CONCLUSIONS

In this paper, we employed a first-principles approach for
the investigation of the spin excitation spectra of 3d and 4d
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TABLE IV. LLG parameters for 3d and 4d impurities embedded in the surface (subscript s) and in the bulk (subscript b) of Bi2Te3, obtained
by fitting the TDDFT dynamical susceptibility data to Eq. (10). Ms is the spin moment of the impurity. Gs

‖ is the symmetric part and Ga
‖ is the

antisymmetric part of the damping tensor, both unitless. KSusc is the MAE obtained from the magnetic susceptibility, in meV. ωLLG
res is the

resonance frequency without including nutation, in meV, as defined in Eq. (11). A large ratio between ωLLG
res and ωc = Ga

‖
Is
‖

indicates that the

nutation makes a substantial contribution to ωres, while ηc = Gs
‖

Ia
‖

provides information on the contribution of the nutation to the damping of the

spin excitation. The MAE and the Gilbert damping are considerably affected when going from surface to bulk. The largest changes occur in
the case of the Co impurity.

Ms Gs
‖ Ga

‖ ωc ηc KSusc ωLLG
res

ωLLG
res

ωc

Crs 3.844 0.018 –0.245 77.68 7.154 0.959 1.322 0.017
Crb 3.823 0.004 –0.215 332.6 47.48 –0.824 1.090 0.003
Mns 4.412 0.000 0.109 3439 298.4 –0.201 0.164 0.000
Mnb 4.335 0.000 0.118 860.7 590.4 –0.216 0.178 0.000
Fes 3.395 0.143 0.286 135.7 65.66 4.302 3.917 0.029
Feb 3.294 0.045 0.234 58.98 20.87 3.055 3.004 0.053
Cos 2.109 0.164 0.274 277.4 38.39 –6.725 9.926 0.037
Cob 1.977 0.307 –0.011 1.015 56.09 –2.168 4.237 4.174
Nbs 1.097 0.053 –0.087 21.91 30.36 4.091 16.31 0.769
Nbb 0.740 0.314 0.049 10.59 488.5 1.028 5.074 0.479
Mos 2.678 0.000 0.096 224.5 752.2 0.417 0.568 0.003
Mob 2.527 0.012 0.151 323.9 1083 0.454 0.624 0.002
Tcs 2.493 0.172 0.099 31.64 234.4 0.353 0.509 0.016
Tcb 2.057 0.059 0.072 12.67 29.32 0.755 1.368 0.111

impurities embedded in two prototypical topological insula-
tors, namely, Bi2Te3 and Bi2Se3. The simulations were carried
out using linear response TD-DFT in the framework of the
KKR-GF method, suitable for computing the properties of
spin excitations at the nanoscale. A mapping onto a general-
ized LLG model allowed us to extract from first principles the
MAE and transversal components of the Gilbert damping and
nutation tensor. The obtained values of the MAE were then
compared systematically to the ones obtained using the torque
method and band energy differences, that rely on the magnetic
force theorem and the frozen potential approximation.

All the considered 3d impurities acquire a finite magnetic
moment in both hosts, while the strong hybridization of the 4d
impurities with the host states makes them more sensitive to
the surrounding environment. For instance, Ru and Pd were
found to be nonmagnetic in Bi2Te3 but became magnetic
in Bi2Se3. Furthermore, and independently from the nature
of the orbitals (3d or 4d), large rotation angles result in
significant changes in the electronic properties when a high
electronic density of states is found at the Fermi energy, in-
validating the assumptions made to invoke the magnetic force
theorem. The MAE must be then computed other perturbative
methods such as linear response theory or the torque method
with small deviation angles. The MAE obtained using linear
response theory is found to coincide with the one computed
from the torque method at small deviation angles differing
only by a negligible renormalization factor.

The spin excitation spectra of the impurities display diverse
trends. When the impurity virtual bound states or in-gap
states are located away from the Fermi energy, the Gilbert
damping is rather low and the lifetime of the excitation
reaches high values compared to the ones observed in metallic

hosts [20,74]. The most striking example is a Mn impu-
rity in Bi2Se3, where the lifetime reaches microseconds. A
contrasting situation is observed for Ru, which displays a
flat excitation resonance in conjunction with a low lifetime.
Moreover, we found that nutation effects can be important
and lead to substantial shifts of the resonance frequency for
some elements such as Nb, Tc, and Ru. We also examined
the contribution of the surface state to the spin dynamics by
comparing the LLG parameters of the impurities embedded in
the surface with those of impurities embedded in the bulk. For
Co and Nb impurities, it was found that the topological surface
state has a drastic impact on the dynamics via the spectral shift
of the impurity-induced electronic in-gap states, while it plays
a minor role for Mn impurities.

The current paper suggests that the in-gap states play a
key contribution in tuning the dynamical properties of the
impurities, while the topological nature of the energy gap was
found to be unimportant. Even if the topological protection of
the surface states is lost after scattering at magnetic impurities,
their linear dispersion (Dirac-like) may result in other inter-
esting effects as, for example, in the induced Friedel oscilla-
tions [75]. The latter are influential when probing dynamical
spin excitations of multi-impurity nanostructures [76].

We provided a systematic investigation of the spin dy-
namics of 3d and 4d impurities embedded in topologically
insulating hosts. The results obtained for excitation lifetimes
of some specific impurities (Mn) provide insights on the
dual (metal and insulator) nature of these materials. This
indicates that these topological materials are of interest in the
current search for single-atom based qubits [2,77]. Indeed a
pivotal requirement consists in the presence of long coherence
times. In addition to that, the MAE computed employing

054201-10



SPIN DYNAMICS OF 3d AND 4d IMPURITIES … PHYSICAL REVIEW MATERIALS 3, 054201 (2019)

perturbative methods such as the linear response can be com-
pared to the one extracted from ISTS measurements. Finally,
several aspects remain to be uncovered from first principles:
the zero-point spin fluctuations [69] of these impurities, which
can be accessed via the dynamical magnetic susceptibility, as
well as the spin dynamics of magnetic nanoclusters or full
magnetic layers deposited on topological insulators.
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APPENDIX A: PHENOMENOLOGICAL PARAMETERS
FROM THE GENERALIZED LANDAU-LIFSHITZ-GILBERT

EQUATION

In this Appendix, we provide the explicit forms of the
phenomenological quantities (anisotropy field, damping and
nutation tensors) discussed in Sec. II C. First, we establish
a connection between the anisotropy field �Ba and the mag-
netocrystalline anisotropy using the phenomenological form
of the band energy EBand. For ease of connection with the
LLG, we present the derivation using a vector formalism.
For systems with uniaxial symmetry, the expansion of the
band energy in terms of the magnetization up to second order
reads [45]

EBand = E0(| �M|) + K
M2

( �M · �en)2 + . . . . (A1)

E0(| �M|) contains the isotropic energy contributions and �en

represents the direction of the easy axis. The anisotropy
field is then given by the first-order derivative of EBand with
respect to �M (the longitudinal component does not affect the
dynamics within the LLG):

�Ba = −∂EBand

∂ �M
= −2K

M2
( �M · �en)�en. (A2)

Second, the Gilbert damping (G) and nutation (I ) tensors
shown in Sec. II C are rank-2 tensors, which can be split
into a symmetric part (labeled with the superscript s) and an
antisymmetric part (labeled with the superscript a). Moreover,
due to the uniaxial symmetry, the Gilbert damping tensor has
the following structure:

G = − 1

γ M

⎛
⎜⎝

Gs
‖ −Ga

‖ Ga
⊥

Ga
‖ Gs

‖ −Ga
⊥

−Ga
⊥ Ga

⊥ Gs
⊥

⎞
⎟⎠. (A3)

The symbol ‖ denotes the spin dynamics parameters describ-
ing the transverse components of the precessional motion
when the spin moment is along the [111] direction in its

ground state. As the system has uniaxial symmetry, the spin
dynamics can be anisotropic, and we introduce the symbol
⊥ to account for this possibility. The nutation tensor has the
same structure:

I = − 1

γ M

⎛
⎜⎝

Is
‖ −Ia

‖ Ia
⊥

Ia
‖ Is

‖ −Ia
⊥

−Ia
⊥ Ia

⊥ Is
⊥

⎞
⎟⎠. (A4)

The previous decomposition of Gilbert damping and nutation
tensors is identical to the one performed on magnetic ex-
change interactions [78,79]. The trace of the damping tensor
coincides with the conventional Gilbert damping constant
for a cubic system [40], while the off-diagonal components
account for the renormalization of γ , which controls the
precession rate. Considering the previous forms for the Gilbert
damping and nutation combined with Eqs. (9) and (5), the
spin-flip dynamical magnetic susceptibility obtained from the
LLG equation reads then

χLLG
+− (ω) = 1

2

Mγ

− 2Kγ

M − (1 + Ga
‖ + iGs

‖) ω + (−Is
‖ + iIa

‖ ) ω2
.

(A5)

The resonance frequency is defined as ∂ImχLLG
+− (ω)
∂ω

|ωLLG
res

= 0. In
the absence of nutation, it can be computed analytically and is
given by

ωLLG
res = − γ√

1 + (Gs
‖)2 + 2Ga

‖ + (Ga
‖ )2

2Ksusc

Ms
. (A6)

The latter can be written in terms of the effective gyromag-
netic ratio as

ωLLG
res = − γeff√

1 + ( Gs
‖

1+Ga
‖

)2

2Ksusc

Ms
, with γeff = γ

1 + Ga
‖
.

(A7)

APPENDIX B: TORQUE METHOD AND LINEAR
RESPONSE THEORY

In this Appendix, we consider small deviations of the
spin moment from the equilibrium direction and connect the
MAE obtained within the torque method and linear response.
This will be done employing the retarded single-particle
GF, which is defined as the resolvent of the single-particle
Hamiltonian H(�r ):

[ε + i0 − H(�r )] G(�r ,�r ′; ε + i0) = δ(�r −�r ′). (B1)

To keep the notation as light as possible, we do not introduce
the partition of space into cells around each atom, as is
customary in the KKR-GF approach. The expressions can
easily be generalized to take that aspect into account. We shall
require the following two basic properties (note that the GF is
a spin matrix):

∂

∂ε
G(�r ,�r ; ε + i0)

= −
∫

d�r ′ G(�r ,�r ′; ε + i0) G(�r ′,�r ; ε + i0), (B2)
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∂

∂X
G(�r ,�r ; ε + i0)

=
∫

d�r ′ G(�r ,�r ′; ε + i0)
∂H(�r ′)

∂X
G(�r ′,�r ; ε + i0),

(B3)

where X is some parameter or quantity upon which the
Hamiltonian depends. Both relations follow trivially from the
defining equation of the GF [Eq. (B1)]. The electronic density
of states is given by

ρ(ε) = − 1

π
Im Trσ

∫
d�r G(�r ,�r ; ε + i0), (B4)

from which the connection between the GF and the band
energy of the main text Eband is established. The spin mag-
netization density is given by

�M(�r ) = − 1

π
Im Trσ

∫ εF

−∞
dε �σ G(�r ,�r ; ε + i0), (B5)

and we make the assumption that the Hamiltonian depends
on the direction of the spin magnetization density in a coarse-
grained way:

H(�r ) = H0(�r ) + Bxc(�r ) n̂(θ, ϕ) · �σ, (B6)

n̂(θ, ϕ) being the direction of the exchange-correlation mag-
netic field. Assuming that the easy axis is along the z direction,
a small rotation angle θ in the xz plane of n̂ results in a
torque Tθ given in Eq. (14). Using the definition of the band
energy and the density of states [Eqs. (13) and (B4)], Tθ can
be expressed in terms of the GF as

Tθ = − 1

π
Im Trσ

∫
dε

∫
d�r (ε − εF)

∂G(�r ,�r ; ε + i0)

∂θ
. (B7)

Relying on Eq. (B3), the first-order derivative of the GF with
respect to θ can be expressed in terms of the derivative of
H(�r ), which reads

∂H(�r )

∂θ
= Bxc(�r )

∂ n̂(θ )

∂θ
· �σ

= Bxc(�r )[cos θ σx − sin θ σz]. (B8)

The combination of the previous equation with Eqs. (B3)
and (B7) leads to the following expression for the torque:

Tθ = − 1

π
Im Trσ

∫ εF

−∞
dε

∫
d�r Bxc(�r )[cos θ G(�r,�r, ε) σx

− sin θ G(�r,�r, ε) σz]. (B9)

The previous expression was obtained after performing a
partial energy integration. Furthermore, considering a small
rotation angle, then G(�r,�r, ε), i.e., the Green’s function for
the rotated �Bxc is related to the unperturbed Green’s function
G0(�r,�r, ε) [with �Bxc(�r) ‖ z axis] via a Dyson equation:

G(�r,�r, ε)

≈ G0(�r,�r, ε) +
∫

d�r ′G0(�r,�r ′, ε) ��Bxc(�r ′) · �σ G0(�r ′,�r, ε),

(B10)

��Bxc(�r) being the change in the exchange-correlation spin
splitting given by

��Bxc(�r ) = Bxc(�r ) (sin θ, 0, cos θ − 1)

≈ Bxc(�r )

(
θ, 0,−θ2

2

)
. (B11)

Then, the expression of G(�r,�r, ε) from Eq. (B10) is plugged
back into Eq. (B9) and cos θ and sin θ are expanded for small
θ as well (retaining linear terms), resulting in the following
form for the torque:

Tθ = − 1

π
Im Trσ

∫ εF

−∞
dε

∫
d�r Bxc(�r )

×
∫

d�r ′[σx G0(�r,�r ′, ε)Bxc(�r ′) σx G0(�r ′,�r, ε)]θ

+ 1

π
Im Trσ

∫ εF

−∞
dε

∫
d�r Bxc(�r )σz G0(�r,�r, ε) θ

=
∫

d�r Bxc(�r )

[ ∫
d�r ′χKS

xx (�r,�r ′, 0) Bxc(�r ′) − M(�r )

]
θ.

(B12)

χKS
xx (�r,�r ′, 0) is the static Kohn-Sham magnetic susceptibility

and M(�r ) is the magnetization density. Using the definition
of the spin-flip Kohn-Sham magnetic susceptibility given in
Eq. (5) in the static limit [i.e., χKS

xy (�r,�r ′, 0) = χKS
yx (�r,�r ′, 0) =

0, and x and y directions are equivalent due to uniaxial
symmetry], the torque reads

Tθ =
∫

d�r Bxc(�r )[2χKS
+−(�r,�r ′, 0) Bxc(�r ′) − M(�r )]θ. (B13)

The spin splitting and the transversal exchange-correlation
kernel Kxc

⊥ (�r ) are related via [17,20]

Bxc(�r ) = Kxc
⊥ (�r )M(�r )

2
. (B14)

To obtain a simple result, we coarse grain the exact equations
by integrating out the spatial dependence and work with effec-
tive scalar quantities. This allows us to write the transversal
exchange-correlation kernel as

Kxc
⊥ = (χKS

+−(0))−1 − χ−1
+−(0). (B15)

Plugging the two previous expressions into the coarse-grained
form of Eq. (B13), Tθ can be written in terms of the static
spin-flip magnetic susceptibilities (Kohn-Sham and enhanced)
as

Tθ = −M2

2
[χ−1

+−(0) − χKS
+−(0) χ−2

+−(0)] θ. (B16)

On one hand, considering that χ+−(0) (static limit) obtained
from TD-DFT relates to KSusc via χ+−(0) = M2

4KSusc
, Eq. (B16)

can be recast into

Tθ = −
(

2KSusc − 8χKS
+−(0)K2

Susc

M2

)
θ. (B17)
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On the other hand, the torque Tθ is also given by the first-order
derivative of the phenomenological form of the band energy
as

Tθ = ∂EBand

∂θ

= −KTorque sin 2θ. (B18)

After expanding for a small angle, Tθ reads

Tθ = −2KTorque θ. (B19)

The connection between KTorque and KSusc shown in Eq. (16)
of the main text can be established when comparing
Eqs. (B17) and (B19).
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