
PHYSICAL REVIEW B 99, 224414 (2019)

Spirit: Multifunctional framework for atomistic spin simulations

Gideon P. Müller,1,2,3,* Markus Hoffmann,1 Constantin Dißelkamp,1,3 Daniel Schürhoff,1,3 Stefanos Mavros,1,3

Moritz Sallermann,1 Nikolai S. Kiselev,1 Hannes Jónsson,2 and Stefan Blügel1
1Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

2Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
3Department of Physics, RWTH Aachen University, 52056 Aachen, Germany

(Received 31 January 2019; revised manuscript received 17 May 2019; published 10 June 2019)

The Spirit framework is designed for atomic-scale spin simulations of magnetic systems with arbitrary
geometry and magnetic structure, providing a graphical user interface with powerful visualizations and an
easy-to-use scripting interface. An extended Heisenberg-type spin-lattice Hamiltonian including competing
exchange interactions between neighbors at arbitrary distances, higher-order exchange, Dzyaloshinskii-Moriya
and dipole-dipole interactions is used to describe the energetics of a system of classical spins localized at
atom positions. A variety of common simulation methods are implemented including Monte Carlo and various
time evolution algorithms based on the Landau-Lifshitz-Gilbert (LLG) equation of motion. These methods
can be used to determine static ground-state and metastable spin configurations, sample equilibrium and
finite-temperature thermodynamical properties of magnetic materials and nanostructures, or calculate dynamical
trajectories including spin torques induced by stochastic temperature or electric current. Methods for finding the
mechanism and rate of thermally assisted transitions include the geodesic nudged elastic band method, which
can be applied when both initial and final states are specified, and the minimum mode-following method when
only the initial state is given. The lifetimes of magnetic states and rates of transitions can be evaluated within
the harmonic approximation of transition-state theory. The framework offers performant central processing unit
(CPU) and graphics processing unit (GPU) parallelizations. All methods are verified and applications to several
systems, such as vortices, domain walls, skyrmions, and bobbers are described.
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I. INTRODUCTION

Multiscale material simulations have emerged as one of the
most powerful and widespread assets in the quest for novel
materials with optimal or target properties, functionalities, and
performance. Simulations are employed to narrow down the
design continuum of devices, to decrease the effort required
in designing novel materials, to substitute experiments that
seem unfeasible, and to analyze existing experiments and
suggest alternatives. They can also provide understanding of
the underlying physics on scales ranging from Ångström to
millimeters and from femtoseconds to decades.

In this context, spintronics is a very active field where
multiscale simulations [1] play an important role for the con-
ceptualization and development of the next-generation data
devices [2]. This includes nanoscale magnetic objects like
domain walls or nontrivial magnetic textures such as solitons
with a time dilemma of 16 orders of magnitude between
writing and saving information.

The simulation approach is extremely useful as it links the
desired properties to the choice of magnetic materials and
their development, giving rise to a large variety of potential
applications [3].

Quantum mechanics is the key to understand magnetism
from a fundamental level and it is therefore common to use
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ab initio methods, such as density functional theory, to calcu-
late interactions between atoms and various other properties.

Because of the computational complexity of such cal-
culations, they can currently only be applied to magnetic
structures in crystals with length scales in the order of 1 nm
and cannot be used for time-dependent dynamics simulations
on timescales relevant for spintronics.

From ab initio methods, one may extract parameters
for more approximate, atomistic spin models, such as
Heisenberg-type spin-lattice Hamiltonians. There, detailed
information about the electronic structure is integrated out
to effective parameters describing the interaction between
pairs of classical spins, so that simulations of magnetization
dynamics can be extended over the timescale of nanoseconds
for systems of hundreds of nanometers.

The third level of the multiscale approach in spintronics is
the well-known micromagnetic approximation [4] based on
the assumption of a continuous magnetization vector field,
defined at any point of the magnetic sample, that is valid
when changes of the magnetization are much larger in space
than the underlying atomic lattice. In contrast, the atom-
istic spin-lattice model covers the technologically increas-
ingly important length scale from a few to several tens of
nanometers.

Here, we present a general-purpose, open-source, i.e.,
publicly available, framework for atomistic spin simulations
called Spirit [5]. There are actually a number of compu-
tational tools available for the simulation of the time- and
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space-dependent magnetization evolution. Among the soft-
ware packages for micromagnetic simulations, two of the
most impactful and widely known ones are OOMMF [6] and
MUMAX3 [7]. This software definitely revolutionized the sim-
ulation of magnetic properties of materials and the temporal
behavior of devices described by the Landau-Lifshitz-Gilbert
(LLG) dynamics. Based on the micromagnetic approach,
these methods have well-known limitations, e.g., the descrip-
tion of antiferromagnets, frustrated magnets, higher order
nonpairwise interactions (e.g., three-spin or four-spin interac-
tion), stochastic spin dynamics and Monte Carlo simulations,
etc. Moreover, most micromagnetic software is not interactive
or provides quite limited in situ access to the parameters of the
modeled system.

Among the atomistic simulation programs, UppASD [8] and
VAMPIRE [9] are examples of well-tested tools that provide
important functionalities beyond LLG simulations.

The functionality of the aforementioned software can
be greatly extended by adding an interactive graphical user
interface (GUI) that can be used to control calculations in real
time to not only change parameters but also interact with the
spin texture as demonstrated, for example, in Ref. [10].

In combination with such a GUI, Spirit unifies various
computational methods that are commonly applied to atom-
istic (and to a certain extent also to micromagnetic) sim-
ulations: Monte Carlo and Landau-Lifshitz-Gilbert (LLG)
dynamics [11], the geodesic nudged elastic band (GNEB)
method [12], minimum mode following [13] (MMF), har-
monic transition-state theory [14] (HTST), and the visualiza-
tion of eigenmodes.

All of these methods are quite distinct, but complementary
in nature [15]. For example, LLG dynamics can be used to
simulate the time evolution of a magnetic system on a short
timescale, while GNEB and/or MMF can be used to find first-
order saddle points of the energy landscape, corresponding
to transition states for thermally assisted transitions. These
calculations can provide important information, such as the
energy barrier for the transition, and can be used in HTST to
calculate the lifetimes of metastable magnetic configurations
over a long timescale. The integration of these methods into
a single, uniform framework can lead to a significant increase
in productivity.

The following section will introduce the structure of the
Spirit software and subsequent sections will detail the afore-
mentioned methods, in order of their complexity, ranked
according to the derivatives of the energy required in imple-
menting these methods. The examples provided are mainly
related to magnetic skyrmions, which represents one of the
most rapidly developing fields in modern nanomagnetism.

II. THE FRAMEWORK

The framework consists of modular components, as illus-
trated in Fig. 1: a core library for calculations and input-
output; an application programming interface (API) layer to
abstract the interaction with the code and provide a uniform
interface across various programming languages, e.g., C/C++
and PYTHON; and a set of user interfaces to enable fast and
easy interaction with simulations, powerful real-time visual-
ization and postprocessing features, for instance, visualization

FIG. 1. The general structure of the framework, which is sepa-
rated into a core library with an application programming interface
(API) layer and a set of user interfaces (UIs). The core library
handles input-output and calculations, while the API layer provides
an abstract way of interacting with the code through several program-
ming languages. The UIs provide direct control of calculations, as
well as real-time visualization and postprocessing features. The back
end for numerical calculations can be used in single-threaded and
central processing unit (CPU)- as well as graphics processing unit
(GPU)-parallel calculations.

of two-dimensional (2D) and three-dimensional (3D) mag-
netization vector fields with corresponding isosurfaces and
visualization of eigenmodes.

The visualization of Spirit is available as a standalone
library called VFRendering [16], which utilizes advanced
features of modern OPENGL, e.g., shaders, available since
version 3.2.

Note that the images of spin systems in Figs. 3 and 8 have
been generated using the graphical user interface of Spirit.
Other examples of the visualization features of Spirit can
be found in Refs. [13,17–19]. Spirit has also been used for
numerical calculations in Refs. [1,13,20,21].

As the API layer is written in the C programming language,
many other languages can be used to call the corresponding
functions. The core library can thus be used in many different
contexts. An illustration of this flexibility is the implemen-
tation of an additional, web-based user interface [22], using
JAVASCRIPT to call Spirit and WEBGL to display the simulated
system.

The desktop GUI can be used to control parameters in the
calculation, such as system size or interaction parameters—
useful for fast testing and setup—as well as for direct inter-
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FIG. 2. Iterations per second of a LLG simulation over side
length L of a simple cubic system for 1 thread, for 10 threads, and on
a GPU. The CPU parallelization consistently increases performance
by almost an order of magnitude. By using a GPU, another order
of magnitude can be gained for large system sizes, while the GPU
performance at small system sizes is limited by the overhead of
CUDA kernel launches. Calculations were performed on a LINUX

system with Intel Core i9-7900X 3.30 GHz and NVIDIA GeForce
GTX 1080 processors.

action with the spin textures. The latter is highly useful, for
example, in setting up complex initial states [10] or rectifying
calculations, such as GNEB paths that have diverged from
their intended transition.

In order to increase productivity in repetitive or long-
timescale calculations, Spirit can be used in PYTHON scripts.
Such scripts allow one to reproduce all steps which can be
taken in the GUI, thus enabling the flexible and effective use
of clusters and remote machines. Sample PYTHON scripts can
be found in the code repository [5].

Note that the ability to use Spirit from PYTHON also enables
a straightforward integration into multiscale simulations and
workflow automation frameworks, such as the atomic simu-
lation environment (ASE) [23] or the automated interactive
infrastructure and database (AiiDA) [24].

Documentation of input, features, and the APIs, as well as
examples of usage, can be found online [5].

The spin-lattice Hamiltonian, as well as all implemented
methods and solvers, have been abstracted from the specifics
of numerical operations, allowing a generic backend, which
can optionally use OPENMP for CPU parallelization or CUDA

for GPU parallelization. The performance of a simple LLG
simulation over different system sizes, including dipolar in-
teractions, is shown in Fig. 2.

The performance gain of the parallelization over the single-
threaded case is obvious as 10 cores give almost an order of
magnitude across a broad range of system sizes and the GPU
can give another order of magnitude at larger system sizes.
As expected, the speed drops with the system size. Note that
when dipolar interactions are included, due to the usage of
FFTs, iterations can be slowed down if a side length of the
system is not a power of 2.

III. MODEL AND METHODS

A. Hamiltonian

In Spirit, we implemented an extended Heisenberg Hamil-
tonian [25,26] of classical spins ni of unit length located at

lattice sites i, giving rise to the magnetic moment mi = µini.
The general form

H = −
∑

i

µiB · ni −
∑

i

∑

j

K j (K̂ j · ni )
2

−
∑

〈i j〉

Ji jni · n j −
∑

〈i j〉

Di j · (ni × n j )

+
1

2

µ0

4π

∑

i, j

i �= j

µiµ j

(ni · r̂i j )(n j · r̂i j ) − nin j

ri j
3

(1)

includes (i) the Zeeman term describing the interaction of the
spins with the external magnetic field B, (ii) the single-ion
magnetic anisotropy, where K̂ j are the axes of the uniaxial
anisotropies of the basis cell with the anisotropy strength K j ,
(iii) the symmetric exchange interaction given by Ji j and the
antisymmetric exchange, also called Dzyaloshinskii-Moriya
interaction, given by vectors Di j , where 〈i j〉 denotes the
unique pairs of interacting spins i and j, and (iv) the dipolar
interactions, where r̂i j denotes the unit vector of the bond
connecting two spins. Quite often, the number of pairs for
the exchange interactions is limited to nearest or next-nearest
neighbors only.

In Spirit, the implementation of the Hamiltonian (1) does
not assume any limitation on the number of or distance be-
tween such pairs, meaning that long-ranged and nonisotropic
interactions can be considered. Additionally, higher order
multispin-multisite interactions [27] are implemented in Spirit

as quadruplets of the form

EQuad = −
∑

i jkl

Ki jkl (ni · n j )(nk · nl ) . (2)

These can represent the 4-spin–2-site [28] (also called bi-
quadratic), the 4-spin–3-site [29], and the 4-spin–4-site [30]
(also called “4-spin”) interactions.

Both the system geometry and the underlying lattice sym-
metry can be chosen arbitrarily by setting the Bravais vectors
and basis cells with any given number of atoms. Spirit also
allows the pinning of individual spins or a set of spins, for
instance, those belonging to the boundary layers. One can also
introduce defects, such as vacancies and atoms of different
types.

1. Dipolar interactions

The dipole-dipole interaction, due to its long-ranged na-
ture, represents the most complex contribution to the Hamil-
tonian (1). Direct summation over all interacting spins is
of complexity O(N2), where N is the number of spins, re-
sulting in dramatic decrease of performance of the simu-
lations. By making use of fast Fourier transforms (FFTs)
and the convolution theorem, the computational complexity
can be reduced to O(N log N ). This convolution method is
well known in micromagnetic simulations [31], based on a
finite difference scheme. To treat arbitrary spin lattices with
any given number of atoms in the basis cells, we use an
adapted version of this method. In particular, we consider
sublattices composed of atoms with the same index in the
basis cell. One FFT is performed on each of these sublat-
tices and additional convolutions are required to describe the
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FIG. 3. Helicity (3) of a ferromagnetic cube, composed of
50×50×50 spins on a simple cubic lattice with constant a = 1Å
and nearest-neighbor exchange of J = 16.86 meV. The stray-field-
induced helicity ν (circles) and ν2 (triangles) are shown in depen-
dence on the reduced external magnetic field h. Both ν and h =
B/(µ0Ms) are unitless parameters, with the saturation magnetization
density Ms. The fitted curves (solid lines) show that the dependence
of ν2 close to the critical field is approximately linear and they give a
critical field value of hc = 0.159, which matches the expected value
of hc = 0.158, as shown in Ref. [34], within 1%. The two insets show
illustrations of how the cube will be magnetized at h = 0 (left) and
h = 0.1 (right).

interactions between the sublattices. An efficient implementa-
tion of this scheme is achieved using high-performance, robust
FFT libraries [32,33].

To verify our implementation of dipolar interactions, we
compared it to the direct evaluation of the sum for random
configurations with spatially nonsymmetric basis cells and
checked the convergence of the stray field of a homogeneously
magnetized monolayer against the analytically known result.

Here, we show that Spirit correctly reproduces the solution
of typical problems, e.g., Ref. [34], by calculating the stray
field-induced helicity of a ferromagnetic cube. The helicity is
defined as the absolute value of the line integral over the curve
C which is composed of the upper edges of the cube:

ν =
|
∮

C
n · ds|∮

C
|ds|

. (3)

In the atomistic case, this is discretized into the appropriate
sums.

The energy minimization was performed using a Verlet-
like velocity projection method (see Appendix D). The results
are shown in Fig. 3. The squared helicity is expected to
approach the critical field linearly, so that a line can be fitted
to extract the precise result from the calculations. We note
that the resulting critical field converges to the expected value
of hc = 0.158 with increasing resolution of the grid, where a
cube with 303 lattice sites already gives an agreement within
2% and the shown example with 503 sites a discretization error
of less than 1% with respect to the continuum solution.

2. Topological charge

When the order parameter of the system represents a
smooth unit vector field n(r), defined at any point of 2D space,

r∈R
2, the field configurations corresponding to localized

solutions [n(r) → n0 for |r| → ∞] can be classified using the
topological concept of homotopy.

The whole domain of definition of the order parameter
can be mapped to an S

2 sphere: R
2 ∪ {∞}↔S

2. Note that
the space of the order parameter n(r), which in magnetic
systems represents a magnetization field n(r)=m(r)/µ, is
also a sphere S

2
n. The map S

2 →S
2
n leads to a homotopy

classification of localized solutions in 2D with the topological
invariant

Q =
1

4π

∫

R2
n · (∂xn × ∂yn) dr. (4)

Any localized solutions with an identical integer index Q

belong to the same homotopy class. It means that such vector
fields can be continuously transformed into one another—
without the appearance of singularities. An example of a large
variety of topologically nontrivial solutions with |Q| � 1 are
the skyrmions in the conventional model of chiral magnets,
which were recently discussed in Ref. [10]. Topologically
trivial magnetic configurations have Q = 0 and irrespective
of morphology they can always be continuously transformed
into the collinear state, n(r) = n0. Note that the homotopy
classification is not applicable to vector field configurations
with noninteger Q.

To avoid ambiguity, in the calculation of the topological
index with Eq. (4) one should follow the sign convention,
assuming that the polarity of the solutions always obeys the
condition n0 = (0, 0, 1) for |r|→∞ [35].

B. Monte Carlo

The Monte Carlo method is well known in physics and
has a broad range of applications [36]. We have implemented
a basic METROPOLIS algorithm with a cone angle for the
displacement of the spins [11,37]. This requires only the
calculation of the energy, making it the most straightforward
method of those implemented in Spirit. While it is a useful
tool to calculate equilibrium properties, the drawback is that
it cannot resolve time-dependent processes.

One iteration of the METROPOLIS algorithm will
sequentially—but in random order—pick each spin in
the system once and perform a trial step. Trial steps are
preformed by defining a relative basis in which the current
spin is the z axis and choosing a new spin direction by
uniformly distributed random variables ϕ ∈ [0, 2π ] and
cos(θ ) ∈ [0, cos(θcone)], where θcone is the opening angle of
the cone.

The trial step is accepted with a probability

P = e−�E/kBT , (5)

where �E is the energy difference between the previous spin
configuration and the trial step. The cone angle can be set
by an adaptive feedback algorithm according to a desired
acceptance-rejection ratio.

Using this method, one can, for example, calculate the
critical temperature of a spin system. It is known that
the isothermal susceptibility is related to the magnetization
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FIG. 4. A 30×30×30 ferromagnet with J = 1 meV, with an
expected critical temperature of TC ≈ 16.71 K. Normalized values
of the total magnetization M, susceptibility χ , specific heat CV,
and fourth-order Binder cumulant U4 are shown. The magnetiza-
tion is fitted with M(T ) = (1 − T/Tc)b. At each temperature, 104

thermalization steps were made before taking 105 samples. Monte
Carlo calculations give Tc ≈ 16.60 K, an agreement with expectation
within 1%. The exponent is fitted with b ≈ 0.33. The inset shows
the Binder cumulants for system sizes of L = 30, L = 20, L = 15,
and L = 10, giving an intersection at TI = 16.5 ± 0.25, which is
an excellent agreement with the expected value of Tc within the
temperature step of 0.5 K.

fluctuations [38]

χ =
1

kBT
(〈m2〉 − 〈m〉2), (6)

where m = 1
N
|
∑

i ni| is the average magnetization of the
sample, while the specific heat relates to fluctuations of the
energy

CV =
1

kBT 2
(〈E2〉 − 〈E〉2), (7)

where both should diverge at the critical temperature Tc for a
phase transition, e.g., to the paramagnetic phase.

The fourth-order Binder cumulant [39], which is often used
to avoid finite-size scaling effects, is defined as

U4 = 1 −
〈m4〉

3 〈m2〉2 . (8)

Figure 4 shows these quantities as results of a Monte Carlo
calculation of a cube of 30×30×30 lattice sites for J =
1 meV. For a simple cubic ferromagnet, from the high-
temperature expansion method [40] the critical temperature
is known to be [41] Tc = 1.44 J/kB = 16.71 K. The results
shown in Fig. 4 demonstrate the validity of the implementa-
tion, as the expected critical temperature is matched with an
error of less than 1%.

Note that in Monte Carlo methods, the parallel tempering
algorithm has proven to be an effective tool [42–44]. The
usage of PYTHON and a message passing interface (MPI) pack-
age would enable one to quite easily reproduce this algorithm
in a PYTHON script using Spirit.

C. Landau-Lifshitz-Gilbert dynamics

The Landau-Lifshitz-Gilbert (LLG) equation [45,46] is the
well-established equation of motion for the dynamical prop-
agation of classical spins. In its explicit form and including
spin torque and temperature contributions [47,48], it can be
written as

∂ni

∂t
= −

γ

(1 + α2)µi

ni × Beff
i

−
γα

(1 + α2)µi

ni ×
(
ni × Beff

i

)

−
α − β

(1 + α2)
uni × ( ĵe · ∇r)ni

+
1 + βα

(1 + α2)
uni × [ni × ( ĵe · ∇r)ni], (9)

in which the terms correspond to (i) precession, (ii) damp-
ing, (iii) precession-like current-induced spin torque, and
(iv) damping-like current-induced spin torque. γ is the elec-
tron gyromagnetic ratio, α is the damping parameter, Beff

i

is the effective field, β is a nonadiabaticity parameter, u =
jePgµB/(2eMS) with je the current density, P is the polar-
ization of the current, e is the electron charge, MS is the
saturation magnetization, ĵe is the electron current normal
vector, and ∇r = ∂/∂r is the spatial gradient acting on the spin
orientation.

The effective field always contains a component related
to the energy gradient Beff

i = −∂H/∂ni, but in this notation
for the LLG equation, the effective field may contain also a
stochastic thermal field, i.e., Bi → Bi + Bth

i , given by

Bth
i (t ) =

√
2Diηi(t ) =

√
2αkBT

µi

γ
ηi(t ), (10)

where the magnitude is given by the fluctuation-dissipation
theorem and ηi is white noise, such that the ensemble av-
erage and variance of the thermal field fulfill 〈Bth

iα (t )〉 = 0
and 〈Bth

iα (t )Bth
jβ (0)〉 = 2Diδi jδαβδ(t ) respectively. To achieve

these properties in an implementation, the vectors ηi(t ) can
each be created from three independent standard normally
distributed random values at every time step. Note also that in
time-integration schemes, to fulfill the fluctuation-dissipation
relation, the thermal field needs to be normalized by the time
step with a factor 1/

√
δt .

For more details on the integration of the stochastic LLG
equation, see, for example, Refs. [49–51] and references
therein.

Sampling of the stochastic LLG for the same parameters
as shown in Fig. 4 is presented in Appendix E, verifying the
implementation and the equivalence of the stochastic LLG and
Monte Carlo methods.

In order to evolve a spin system in time according to
this equation, quite a few well-known solvers can be ap-
plied. In Spirit, currently Heun’s method [11], a fourth-order
Runge-Kutta solver, Depondt’s Heun-like method [52], and
Mentink’s semi-implicit method B (SIB) [49] are imple-
mented (see Appendixes B and C for details).

These methods can also be used for energy minimization
by considering only the damping part of the LLG equation.
However, experience has shown that a Verlet-like velocity
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FIG. 5. LLG calculation (top) and numerical error (bottom) of a
single spin in an external magnetic field of B = 1 T with a damping
of α = 0.1 and a time step of dt = 10 fs, using the Depondt method.
The error is the difference between the numerically calculated value
and the analytical solution (11). Note that the error may depend
strongly on the time step and damping. While the Heun method
matches well with results shown in Ref. [9], giving an error within
10−6, the Depondt method shows a lower error of around 3×10−7

with respect to the analytical solution.

projection solver [12] can greatly improve convergence to the
closest energy minimum, as it carries a fictive momentum (see
Appendix D for details).

An easy test for the validity of the implemented dynamics
solvers is the Larmor precession and the damping of a single
spin in an external magnetic field, as shown in Fig. 5. The
analytical equations with which the results can be compared
are

nz(t ) = tanh

[
αγ

(1 + α2)µ
|B|t

]

ϕ(t ) =
γ

(1 + α2)µ
|B|t

nx(t ) = cos[ϕ(t )]
√

1 − n2
z (t ) . (11)

The errors of the Depondt solver, shown in Fig. 5, match those
of an equivalent calculation given in Ref. [9].

In order to verify our implementation of spin-current-
induced torques, the results from Ref. [48] on the velocity of
a domain wall in a head-to-head spin chain were reproduced

FIG. 6. The average velocity of head-to-head domain wall (see
top) for various values of the nonadiabatic parameter β. For
β = 0.10, the Walker breakdown occurs at approximately uW ≈
0.01. For β = 0, a critical current is at uc ≈ 0.0414. From this
point, the relation 〈v〉 =

√
u2 − u2

c/(1 + α2) mentioned by Thiaville
et al. [53] takes effect. The mentioned relation is fitted to the data for
β = 0. For β = 0.1 and currents under the Walker breakdown and
β = 0.02, the dashed lines show linear fits. Open symbols denote
rotation around the x axis. The results from Ref. [48] are reproduced
well.

for various nonadiabatic parameters β. The chain is oriented
along the x axis and the first and last spins are fixed in +x and
−x directions, respectively.

As a subset of the general Hamiltonian (1), the Hamilto-
nian for this example can be written as follows:

H = −
∑

i

K1n2
ix + K2n2

iy − J
∑

〈i j〉

ni · n j . (12)

The reference provides analytical equations against which
the numerical results were checked. In Fig. 6, we show the
data for the average domain wall velocity 〈v〉 over applied
current u in normalized units.

The approximate prediction [53] 〈v〉=
√

u2 − u2
c/(1 + α2)

fits the results well, as shown in Fig. 6. As expected, we
observe the Walker breakdown [54] and a critical effective
velocity of uc ≈ 0.0414, which is in close agreement with the
reported value of uc ≈ 0.0416. Note for β = 0.1 and currents
larger than uW , as well as for β = 0 and currents larger than
uc, the wall starts rotating around the x axis.

D. Geodesic nudged elastic band method

When determining the rates of some rare transition events
or the lifetimes of metastable magnetic states, LLG dynam-
ics simulations typically are typically unfeasible due to the
disparity between the timescales of the simulation and the
transition events. An approach to this problem is given by
a set of rate theory methods, namely the geodesic nudged
elastic band [12] (GNEB) and minimum mode following [13]
(MMF) methods together with harmonic transition-state the-
ory [14] (HTST). The latter two are higher order methods,
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requiring knowledge of the second derivatives of the energy—
the Hessian matrix—and will be described in the following
sections.

The GNEB method is a way of calculating minimum
energy transition paths between two predetermined configu-
rations. The path is discretized by a number of spin configu-
rations, which in the following are called images.

In order to converge from an initial guess to a stable,
energy-minimized path, spring forces are applied along the
path tangents, while energy gradient forces are applied orthog-
onal to the path tangents. The total force therefore reads

F tot
ν = F S

ν + F E
ν , (13)

where ν is the image index along the chain, F S is a spring
force, and F E

ν is an energy gradient force. The forces in this
section are 3N-dimensional vectors.

A simple definition of the spring force, which gives an
equidistant distribution of images in phase space, is given by

F S
ν = (lν−1,ν − lν,ν+1) τν, (14)

where lν,µ is a measure of distance between images ν and µ

and τν is the (normalized) path tangent at image ν.
The F E

ν should pull each image toward the minimum
energy path, while leaving the distance to other images un-
changed. They can be defined to be orthogonal to the path by
orthogonalizing with respect to the tangents

F E
ν = −∇Eν + (∇Eν · τν )τν, (15)

where ∇i = ∂/∂ni.
The path tangents can be easily approximated by finite

differences between spin configurations, but in order to avoid
the formation of kinks in the path the definitions given in
Ref. [55] should be used.

In order to precisely find the point of highest energy along
the minimum energy path, a first-order saddle point of the
energy landscape, one can use a so-called climbing image
(CI) [56]. Convergence onto the saddle point is achieved
through the deactivation of the spring force for that image,
while inverting the energy gradient force along the path:

F S,CI
ν = 0, F E,CI

ν = −∇Eν + 2(∇Eν · τν )τν . (16)

This will cause it to minimize all degrees of freedom, except
the tangent to the path, which is instead maximized.

So far, the definitions match those of the regular NEB
method. In order to use the NEB method for spin systems, it
is necessary to consider the constraint of constant spin length
and treat tangents and force vectors accordingly [12]. For
more details, see Appendixes F and H.

In order to verify and illustrate the GNEB method, we show
the example of a single spin in a set of Gaussian potentials
(see Appendix G). Figure 7 shows the initial guess, made
by homogeneous interpolation between the initial and final
configurations, as well as a relaxed chain of images and a
chain with two climbing and one falling images. The climbing
images converge onto the saddle points and the falling image
converges onto an additional local minimum, so that the
energy barriers are known exactly.

The implementation of the GNEB method can be further
tested using a conceptually simple process, which has enough

FIG. 7. An illustration of the GNEB method for a single-spin
system (the Hamiltonian and corresponding parameters are given
in Appendix G). The two-dimensional energy landscape is shown
superimposed on a unit sphere. The initial guess (green), relaxed
path (blue), and final path using climbing and falling images (red)
are shown.

degrees of freedom to pose a challenge for convergence: the
destruction of a skyrmion tube in a chiral magnetic thin film.

The parameter set is chosen in accordance with a calcula-
tion presented in Ref. [57], where a novel particle-like state is
shown to emerge along the minimum energy path—the chiral
bobber.

The nucleation of a pair of Bloch points, cutting the
skyrmion tube in half, is reported, resulting in the formation
of one chiral bobber at each surface of the film. In fact, as
we show in Fig. 8, also a single Bloch point can be nucleated
at one of the film’s free surfaces. For these calculations, the
specific parameters are J = 1 meV and D = 0.45 J , meaning
that the incommensurate spin spiral has a period of LD =
13.96 a.

We note that the conical phase background—
corresponding to the ground state of the system—introduces
additional modes with little energy cost associated and this
can slow the convergence to the minimum energy path.

The climbing-image method [56] was used to converge
nearby images onto the maxima along the path. Analogous
to a suggestion in Ref. [56], the spring forces were modified
to distribute the images evenly along the energy curve. The
latter improves the convergence onto the maxima, as the
resolution for the finite-difference calculation of the tangents
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FIG. 8. The skyrmion tube (SkT) is either cut in half by the
nucleation of a pair of Bloch points in the center (red minimum
energy path) or separated from the upper surface by nucleation of
a single Bloch point (blue minimum energy path). At a field strength
of H = 0.8 HD, both processes have almost equal energy barriers
of �Ecenter = 23.13 J and �Esurface = 22.81 J . A chiral bobber is
formed (two when the skyrmion tube is cut in half), whose collapse
has an energy barrier of �Ebobber = 7.55 J . Note that the slight
differences in the collapse of the chiral bobber between the two paths
come from different initial paths.

at the saddle points is increased. As is common to calculate
cubic polynomials to interpolate between the discrete points,
the segment length of these polynomials can be used for the
spring forces between the images. In Spirit, an additional pa-
rameter is implemented, with which one can set the weighting
of energy versus reaction coordinate.

Without the climbing image method, energy barrier calcu-
lations may be quite imprecise, especially when the resolution
near the maximum is low. This is illustrated by the fact that we
observe a ratio of the energy barriers between the collapse of
the bobber and the Bloch point nucleation of only 3.3, while
Ref. [57]—not using climbing images—reports a ratio of 4.3.

The GNEB calculations reveal a crossover between the two
Bloch point nucleation mechanisms, where at increasing field
it becomes favorable to nucleate just one Bloch point at the
surface. It can further be seen that the energy barrier for the
collapse of the bobber goes to zero right below the critical
field HD, meaning that—in the frame of this model—it can
only be stabilized in the conical phase.

In order to give additional quantitative reference results for
this parameter set, the dependence of the energy barrier on the
external magnetic field is also presented in Fig. 9.

E. Harmonic transition-state theory

As certain processes may be too rare or the desired
timescale to be simulated too large to allow for dynamical
simulations, other approaches are essential in estimating sta-
bility and the calculation of lifetimes of metastable magnetic
states.

FIG. 9. Energy barriers for the nucleation of Bloch points (BP) at
the surface (blue circles) and in the center (green square), as well as
the nucleation (red triangles up) and collapse (red triangles down) of
a chiral bobber for a cube of size 30×30×30 over applied magnetic
field H . Periodic boundary conditions are applied in the xy plane.
The BP nucleation at the surface and center represents collapse of a
skyrmion tube, while the bobber nucleation represents the creation
of a BP in an otherwise homogeneous sample.

One can employ the well-known transition-state the-
ory [58], which has been used extensively, e.g., in chemical
reaction and diffusion calculations [59]. The rate of transitions
can be estimated from the probability of finding the system
in the most restrictive and least likely region separating the
initial state from possible final states—the transition state,
sometimes also called dividing surface.

Within the harmonic approximation to transition-state the-
ory [14] (HTST), one can make simplifications allowing
the analytical calculation of the transition rate. The rate is
then given by an Arrhenius-type law with an exponential
dependence on the inverse temperature T and the energy
barrier of the transition �E , as well as more complicated
pre-exponential factors:

ŴHTST =
v

2π
�0e−�E/kBT , (17)

with

�0 =
√

det′ HM

det′ HS
=

√∏′
iλ

M
i∏′

iλ
S
i

, (18)

v =
√

2πkBT
NM

0 −NS
0 V S

V M

√√√√
′∑

i

a2
i

λS
i

, (19)

where the M and S superscripts indicate the minimum and
first-order saddle point of the transition. The λi are eigenval-
ues of the Hessian matrix (see Appendix H), V are the phase-
space volumes of zero modes (if present, otherwise V = 1),
N0 are the number of zero modes—modes with zero
eigenvalue—and ai are coefficients in the expansion of the
velocity along the unstable mode. The primes next to deter-
minants, products, and sums denote that only positive eigen-
values are taken into account.
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FIG. 10. Lifetime τ = 1/ŴHTST of an isolated skyrmion in a pe-
riodic two-dimensional system, with J = 1 meV and D = 0.6 meV,
as a function of temperature T and external magnetic field H . The
lifetime is given on a logarithmic scale with isolines ranging from 1
ps up to 1 year. Because only a single transition mechanism is taken
into account, the structure of the graph is simple.

The factors ai are in fact velocities: the first row of the
dynamical matrix V transformed into the eigenbasis of the
Hessian according to

V|2N = �T T T
V|3N T �, (20)

where T is a 3N×2N basis matrix of the tangent space and
�i j denote the matrix of the Hessians eigenvectors (in 2N

representation, i.e., in the basis T ). See Appendix H for more
information.

The implementation has been verified against UppASD [8],
and we additionally present an example for the calculation of
the lifetime τ of an isolated skyrmion in a two-dimensional
system. As parameters, we chose J = 1 and D = 0.6 J and
only the radial collapse mechanism is considered, making
for a simple structure of the dependence on external field
and temperature. Note that this example is purely illustrative
and while larger skyrmions would exhibit longer lifetimes,
the parameters are chosen to produce a small skyrmion in
order to reduce the computational effort. Figure 10 shows the
results for an external field varied between 3.5. and 5 T and
temperature between 2 and 5 K.

HTST as well as Langers theory [60], which is closely re-
lated, have recently both been used to calculate skyrmion life-
times [61–63]. These calculations show that energy barriers
are in general not sufficient for the estimation of the stability
of metastable magnetic states and the entropic contributions
in the pre-exponential factors can have a significant impact.

There are two translational zero modes at the initial state
minimum, while—due to the lattice discretization and the
defectlike shape of the skyrmion at the saddle point—there are
no zero modes at the saddle point. Consequently, the transition
rate prefactor has a linear temperature dependence.

F. Minimum mode following method

To find the first-order saddle points on the energy surface,
without prior knowledge of the possible final states, the mini-

FIG. 11. A single spin under the exchange and DMI interaction
with another spin. The energy landscape is two dimensional and is
projected onto a sphere. (a) The gradient force field, pointing away
from the maximum and toward the minima. (b) The effective force
field, pointing toward the saddle point. The resulting paths for four
different starting points are shown (black, gray, and white lines). See
Appendix I for a visualization of the corresponding minimum mode
directions.

mum mode following method [13] can be used. The effective
force acting on a spin configuration is defined as

F eff = F − 2(F · λ̂)λ̂, (21)

where F = −∇H is the negative gradient of the energy and
λ̂ is the normalized eigenvector corresponding to the lowest,
negative eigenvalue of the Hessian matrix of second deriva-
tives. Note that these vectors and the dot product are 3N

dimensional for a system with N spins.
The calculation of second derivatives requires further at-

tention, as the requirement of constant length effectively con-
strains the spins ni to a submanifold Mphys ⊂ E of an embed-
ding space E = R

3N . As is shown in Ref. [13], the covariant
second derivatives, valid at all points of the phase space,
can be calculated using a projector-based approach [64]. The
corresponding 2N×2N Hessian matrix can be represented as

Hi j = T T
i H̄i jTj − T T

i I (n j · ∇ jH̄)Tj, (22)

where i and j are spin indices, H̄ is the smooth continuation
of the Hamiltonian to the embedding space, H̄i j = ∂2H̄, I is
the 3×3 unit matrix, and Ti is a 3×2 matrix that transforms
into a tangent space basis of spin i. As the Hessian matrix
(22) is represented in the 2N-dimensional tangent basis,
the evaluation of an eigenmode in the 3N representation of
the embedding space E requires a transformation back, i.e.,
λ|3N = T λ|2N .

Further details on the above mathematical concepts and
notations can be found in Appendix H.
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For a single spin, the energy landscape and force vectors
can be visualized easily as the phase space is two dimensional.
An illustration of the method is shown in Fig. 11 for a system
consisting of one movable spin interacting with a second,
pinned spin. The parameters of the Hamiltonian are, relative
to the exchange constant J ,

K = 4J, D = (0, 0, 1J ), (23)

where the anisotropy K is used to reduce the symmetry of the
energy landscape.

The figure illustrates how the minimum mode can be used
to invert the right part of the gradient force in order to obtain
a force that directs the system to a first-order saddle point.

The test of a larger and far more complex system has
been given in Ref. [13], where the minimum mode-following
method revealed the existence of a skyrmion duplication
mechanism. By defining the force field in the above way,
previously unknown transition mechanisms can be found and
subsequently used in the calculation of lifetimes.

Applying this saddle-point search method to three-
dimensional systems will likely identify an even larger variety
of mechanisms, as the additional dimension can significantly
increase the amount of possible transitions.

IV. CONCLUSIONS

The functionality of a comprehensive simulation frame-
work, Spirit, for studies of atomic-scale magnetic systems
is presented and various example applications described. It
is an open-source software written in the C++ program-
ming language and is available for free under the so-called
MIT license (see Ref. [5]). Spirit is a very flexible, high-
performance, and interactive tool, able to simulate, for exam-
ple, ferromagnets, antiferromagnets, synthetic antiferromag-
nets, ferrimagnets, noncollinear magnetic structures, vortices,
or skyrmions. Arbitrary geometries and interactions can be de-
scribed, such as bulk systems, thin films, exchange bias, mul-
tilayers, nanotubes, or core-shell nanoparticles. The computa-
tional domain can be treated by open and periodic boundary
conditions and can be subjected to external magnetic fields,
temperature, and spin-current-induced torques. Because it can
be used with the PYTHON programming language, Spirit can
integrate perfectly into multiscale simulations and workflow
automation frameworks, such as ASE [23] or AiiDA [24]. It
can be used on most common architectures, such as desktop
and laptop computers, clusters or supercomputers, and even
mobile devices. The calculations can be parallelized both on
CPUs and GPUs.

Various simulation methods have been implemented,
including Monte Carlo, Landau-Lifshitz-Gilbert dynamics,
Langevin dynamics, geodesic nudged elastic band, and mini-
mum mode-following methods as well as the calculations of
transition rates and lifetimes within the harmonic approxima-
tion to transition-state theory. The basic algorithms of these
methods have been outlined, their implementation verified,
and applications to several systems, such as vortices, domain
walls, skyrmions, and boobers, are described. The parameters
of the simulation can be set and modified in real time through
a graphical user interface and the output of the simulations can
be visualized easily.

We note that a micromagnetic description of the energetics
could easily be implemented in Spirit and the micromagnetic
calculations would then be able to make use of the various
simulation methods and visualization features.
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APPENDIX A: DETERMINATION OF TOPOLOGICAL

CHARGE FOR SPIN DENSITY ON A LATTICE

For the proper definition of the topological charge of a
discrete lattice of spins n(xi, yi ), where i runs over all lattice
sites, we follow the definition given by Berg and Lüscher [65],
and arrive at the following expression:

Q =
1

4π

∑

l

Al , (A1)

with

cos

(
Al

2

)
=

1 + ni · n j + ni · nk + n j · nk√
2(1 + nin j )(1 + n jnk )(1 + nkni )

(A2)

where l runs over all elementary triangles of any triangulated
regular lattice and Al is the solid angle, i.e., the area of the
spherical triangle with vertices ni, n j , and nk; see Fig. 12. The
sign of Al is determined as sign (Al ) = sign [ni · (n j × nk )].

The sites i, j, and k of each elementary triangle are num-
bered in a counterclockwise sense relative to the surface nor-
mal vector r̂⊥ pointing in positive direction of the z axis. The
latter means that the numbering should satisfy the condition
r̂⊥ · (ri j × rik ) > 0, where ri j is a connection vector directed
from lattice site i to j.

The parameter Al can be thought of as local topolog-
ical charge density, which takes values in the range of

FIG. 12. Fragment of hexagonal lattice of magnetic spins, which
illustrates the definition of the topological charge on a discrete lattice
as given in the main text. Al is the area of a spherical triangle defined
by vectors ni, n j , and nk located at the vertices of a triangle of lattice
points (indicated shaded).
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−2π < Al < +2π . According to Berg and Lüscher [65],
there is a set of exceptional spin configurations for which
Q is not defined but still measurable as Al in (A2) is de-
fined for all possible spin configurations. The exceptional
spin configurations correspond to the case when a spherical
triangle degenerates to a great circle Al = 2π . In this case,
the orientation of Al becomes ambiguous and the position of
these elementary triangles l∗ are considered as exceptional
configurations or topological defects of a two-dimensional
magnetic structure.

These topological defects satisfy the following conditions:

ni · (n j × nk ) = 0, and |ni + n j + nk| � 1. (A3)

The elementary triangle l∗, for which the condition (A3) is
satisfied, can be considered as the position at which the local-
ization of a topological defect takes place. It is important to
note that the definition of the topological charge given above
remains correct only for spatially extended two-dimensional
systems. This means that a topological analysis of the spin
structure on a finite-size domain is only defined if periodical
boundary conditions are present. In the case of open boundary
conditions, strictly speaking, the topological charge is not
defined.

APPENDIX B: HEUN’S SOLVER

To simplify the following discussion, we write the LLG
equation (9) as

∂ni(t )

∂t
= ni(t ) × Ai(t, {n j (t )}), (B1)

where {n j} is the set of all spins and we keep the explicit time
dependence of Ai, as the Hamiltonian can be time dependent,
for example, when an AC magnetic field is used.

Heun’s method is a common and illustrative way to solve
ordinary differential equations (ODEs) by first calculating an
intermediate prediction step and then “averaging” to obtain
the final approximation. When we denote the time step δt , for
an ODE of the form

∂y(t )

∂t
= f (t, y(t )), y(t0) = y0, (B2)

the predicted value yp is first calculated as

yp(t + δt ) = y(t ) + δt f (t, y(t )) (B3)

and then the approximation for the next step as

y(t + δt ) = y(t ) + δt
f (t, y(t )) + f (t + δt, yp(t + δt ))

2
.

(B4)

When applied to the LLG equation, where f =̂ n × A, this
integration scheme obviously does not intrinsically preserve
the spin length, requiring the renormalization of the vectors ni

after a given number of iterations, depending on the required
precision. Note that Heun’s method falls into the category
of Runge-Kutta methods, which function analogously and
therefore all have this property.

In order to improve on this, Ref. [52] proposes to make use
of the fact that the spins are only allowed to rotate, by writing

an appropriate rotation matrix Ri, which is calculated directly
from the field Ai.

Applied to Heun’s method, the prediction step (B3) reads

n
p

i (t + δt ) = Ri(Ai(t, {n j (t )})) ni(t ). (B5)

To perform the correction step (B4), one needs the correction
field Ac, which is calculated from the average of the initial and
predicted fields:

Ac
i =

Ai(t, {n j (t )}) + A
p

i

(
t + δt,

{
n

p

j (t + δt )
})

2
(B6)

From this, in turn, the rotation matrix for the correction step
Rc

i (Ac
i ) is obtained and the final step of the scheme reads

ni(t + δt ) = Rc
i

(
Ac

i

)
ni(t ) . (B7)

Higher order Runge-Kutta schemes could apply this ap-
proach analogously.

APPENDIX C: SEMI-IMPLICIT MIDPOINT SOLVER

The semi-implicit scheme B (SIB), described in Ref. [49],
makes use of an implicit midpoint (IMP) structure. In con-
trast to Runge-Kutta-type schemes, such as described in
Appendix B, this intrinsically preserves the spin length.

IMP schemes solve differential equations of the form
y′(t ) = f (t, y(t )), y(t0) = y0 [see Eq. (9) of the main text] and
an iteration step is defined as

y(t + δt ) = y(t ) + δt f

(
t +

δt

2
,

y(t ) + y(t + δt )

2

)
. (C1)

For the LLG equation (B1) and a time step δt , this leads us to

ni(t + δt ) = ni(t ) + δt
ni(t ) + ni(t + δt )

2

× Ai

(
t +

δt

2
,

{
n j (t ) + n j (t + δt )

2

})
. (C2)

The SIB scheme uses a predictor n
p

i to reduce the implic-
itness of the equation above by removing the dependence of
Ai on n j (t + δt ). To preserve the spin length, the predictor is
obtained with the IMP structure:

n
p

i (t + δt ) = ni(t ) + δt
ni(t ) + n

p

i (t + δt )

2
A(t, {n j (t )}). (C3)

Equation (C3) can be rewritten as

M · np(t + δt ) = MT · n(t ) (C4)

with the matrix

M = I + skew(A) =




1 −Az Ay

Az 1 −Ax

−Ay Ax 1


. (C5)

The right-hand side of Eq. (C4) can be easily calculated as

MT ni = ni + ni × Ai =: a. (C6)

To solve Eq. (C4), we use Cramer’s rule. The components
n

p

i,α with α = x, y, z of n
p

i are calculated with

n
p

i,α =
det(Mα )

det(M)
, (C7)
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where Mα is the same matrix as M but column α is replaced
with the vector a, for example,

Mx =




ax −Az Ay

ay 1 −Ax

az Ax 1


 . (C8)

We now use the predictor n
p

i in the IMP step (C2) to
calculate ni(t + δt ):

ni(t + δt ) = ni(t ) + δt
ni(t ) + ni(t + δt )

2

× Ai

(
t +

δt

2
,

{
n j (t ) + n

p

j (t + δt )

2

})
. (C9)

The correction step is analogous to the prediction step
[compare Eqs. (C3) and (C9)], meaning that the scheme (C7)
can be applied to obtain ni(t + δt ), too.

APPENDIX D: VELOCITY PROJECTION SOLVER

This description is derived from Ref. [12]. Verlet-like
methods generally find application in solving second-order
differential equations of the form ẍ(t ) = F (t, x(t )), x(t0) =
x0, and ẋ(t0) = v0, such as Newton’s equation of motion.

One formulation of this method is to increment both the
position and the velocity at each time step,

x(t + δt ) = x(t ) + δt v(t ) +
1

2m
δt2 F (t ), (D1)

v(t + δt ) = v(t ) +
1

2m
δt (F (t ) + F (t + δt )). (D2)

The velocity projection is used to accelerate convergence
toward local minima and to avoid overstepping due to momen-
tum. The velocity at each time step is damped by projecting it
on the force

v →
{

(v · F )F/|F |2, (v · F ) > 0
0 else

. (D3)

Note that the dot product and norm in this equation denote
those of 3N-dimensional vectors.

To apply this scheme to the energy minimization of a spin
system, we therefore no longer solve the LLG equation but
instead pretend that the spins are massive particles moving on
the surfaces of spheres. The force is then simply

F i = −
∂H

∂ni

. (D4)

As the method does not conserve the length of the spins, they
should be renormalized after each iteration:

ni(t + δt ) →
ni(t + δt )

|ni(t + δt )|
. (D5)

Note that this scheme, too, would most likely benefit from the
usage of rotations instead of displacements.

APPENDIX E: STOCHASTIC LLG

Instead of Monte Carlo, one can also sample the stochastic
LLG equation over time. We present here the results of such
sampling for the same system and parameters, as the example

FIG. 13. A 30×30×30 ferromagnet with J = 1 meV, with an
expected critical temperature of TC ≈ 16.71 K. The energy per spin E

and normalized values of the total magnetization M, susceptibility χ ,
specific heat cV, and fourth-order Binder cumulant U4 are shown. The
value obtained from the simulation is Tc ≈ 16.92 K, an agreement
with the expectation of 1.2%. The exponent is fitted with b ≈ 0.33.
At each temperature, 2×105 thermalization steps were made before
taking 106 samples.

shown in Fig. 4. Recall the expected critical temperature
Tc = 1.44 J/kB ≈ 16.71 K. Figure 13 shows the results.

The results shown in Fig. 13 demonstrate the validity of the
implementation, as the expected critical temperature of TC ≈
16.71 K is matched with an error of only 1%. Note, however,
the higher number of samples (compared to Monte Carlo)
required to obtain this result: At each temperature 2×105

thermalization steps were made before taking 106 samples.

APPENDIX F: GNEB TANGENTS AND FORCES

For spin systems, special care has to be taken due to the
fact that the phase space is curved (the spins are restricted to
unit spheres; see also Appendix H).

The expression for lν,µ should not be the Euclidean dis-
tance norm, but the geodesic (here, the great circle) distance.
Further, the tangents τν need to lie in the space tangent to their
corresponding image. One may correct the tangents for exam-
ple by a simple projection, orthogonalizing the corresponding
three-component subvectors with respect to the spins

τν,i → τν,i − (τν,i · nν,i )nν,i . (F1)

After this, the tangent needs to be renormalized τν → τν/

|τν |. This tangent projection is illustrated for a single spin in
Fig. 14. As the spring forces are constructed from tangent
vectors, they are by definition in the tangent space.

Finally, for the energy gradient force, the same scheme as
for the tangents can be applied, and we write for each spin

FE
ν,i → FE

ν,i −
(
FE

ν,i · nν,i

)
nν,i. (F2)
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FIG. 14. Schematic visualization of the projection of the tangents
for a single-spin system. After a tangent τ FD

ν is determined by finite
difference calculation, it needs to be projected onto the tangent plane
to the spin configuration so that it correctly points along the path.
This tangent is denoted τ proj

ν and can be calculated, e.g., by removing
the component in the direction of the image; see Eq. (F1). Note that
the tangent vector τν needs to be normalized, which for a multispin
system needs to be performed in 3N dimensions.

APPENDIX G: GNEB PARAMETERS

OF THE SINGLE-SPIN SYSTEM

The energy surface of the single-spin system, shown in
Fig. 7 in the main text to illustrate the geodesic nudged elastic
band method, is defined for a single spin as a sum of Gaussians
of the form

H =
∑

i

Hi =
∑

i

ai exp

[
−

(1 − n · ci )2

2σ 2
i

]
, (G1)

with parameters given in Table I.

APPENDIX H: DETAILS ON THE CURVED MANIFOLD

The following has been detailed in the supplementary
material of Ref. [13], but the key ideas are reproduced here.
Both the HTST and MMF methods require the calculation
and diagonalization of the Hessian matrix. However, when
treating Riemannian manifolds, the second derivatives do not
have an intrinsic geometrical meaning and therefore need to
be treated with special care [66].

In a spin system where the spin length is fixed, the manifold
Mphys of physical states is composed of the direct product of

TABLE I. Parameters of the Gaussians in the energy surface of
the single-spin system shown in Fig. 7 in the main text.

a σ cx cy cz

−110 0.06 −0.20 0.00 −0.90
080 0.15 −1.00 0.20 −0.20

−090 0.10 1.00 −0.20 −0.10
009 0.03 0.80 0.50 −0.80
015 0.07 0.80 −0.50 −0.70

−090 0.10 0.50 1.20 −0.40
−090 0.10 0.20 −0.90 −0.40

N spheres:

Mphys =
N⊗

i=1

S2 ⊂ R
3N . (H1)

Hence, Mphys is a submanifold of the embedding Euclidean
space E = R

3N .
It turns out to be convenient to treat the spins and deriva-

tives with respect to their orientations in a 3N-dimensional
Cartesian representation. This also avoids problems of other
representations, such as the singularities which arise at the
poles of spherical coordinates. The derivatives in the embed-
ding space E are readily calculated by extending the Hamilto-
nian H, which is defined on Mphys to a function H̄ on E .

While we denote the gradient taken in the embedding space
E as ∂H̄, the gradient taken on the manifold Mphys has to
lie in the tangent space to the manifold, which we write as a
projection Px∂H̄. The Hessian matrix of second derivatives in
the embedding space E is denoted ∂2H̄.

In this extrinsic view onto the spin manifold, the covariant
second derivatives can be extracted from a projector ap-
proach [64], where for any scalar function f on the manifold
Mphys, the covariant Hessian is defined as

Hess f (x)[z] = Px∂
2 f̄ (x)z + Wx(z, P⊥

x ∂ f̄ ). (H2)

Wx denotes the Weingarten map, which, for a spherical mani-
fold, for any vector v at a point x is given by

Wx(z, v) = −zxT
v, (H3)

where z is a tangent vector to the sphere at x.
To calculate the Hessian, we insert v = P⊥

x ∂H̄ and retrieve

Wx(z, P⊥
x ∂H̄) = −zxT P⊥

x ∂H̄

= −zxT xxT ∂H̄

= −zxT ∂H̄, (H4)

where xT ∂H̄ is the scalar product of the spin with the gradient.
To illustrate the implementation in Spirit [5], we switch

notation to matrix representation and drop the subscript x. For
spin indices i and j, the gradient ∂H̄ can be written as a three-
dimensional object ∇iH̄ and the second derivative ∂2H̄ as a
matrix H̄ .

In Euclidean representation, the Hessian of Eq. (H2) be-
comes as a 3N×3N matrix,

H |3N = (Hi j |3N ) =




H11|3N H12|3N · · ·
H21|3N H22|3N · · ·

...
...

. . .


, (H5)

consisting of N2 blocks, each corresponding to a different
spin-spin subspace. It is obtained by acting with Eq. (H2) on
the Euclidean basis vectors of the embedding space E .

These subspace matrices of size 3×3 are given by

Hi j |3N = PiH̄i j − δi jIn j · ∇ jH̄, (H6)

where I denotes the 3×3 unit matrix.
The matrix H |3N , of course, describes 3N degrees of free-

dom, while there can only be 2N physical eigenmodes of the

224414-13



GIDEON P. MÜLLER et al. PHYSICAL REVIEW B 99, 224414 (2019)

spins, spanning the tangent space to the spin configuration.
In order to remove the unphysical degrees of freedom in the
embedding space E , it is sufficient to transform the matrix
into a tangent space basis, which we can write as Hi j =
T T

i Hi j |3N Tj , where Ti is the basis transformation matrix of
spin i fulfilling T T P = T T and T T T = I|2N .

The true Hessian H = (Hi j ) of Eq. (H2) in the 2N×2N

matrix representation, containing only the physical degrees of
freedom, is therefore defined as

Hi j = T T
i H̄i jTj − T T

i I (n j · ∇ jH̄)Tj . (H7)

Note that this reduction of dimensionality also improves the
numerical efficiency of the diagonalization.

As the eigenmodes λ|2N are represented in the tangent
basis, the 3N representation needs to be calculated by
λ|3N = T λ|2N . While the 3×2 basis matrix Ti can be calcu-
lated quite arbitrarily by choice of two orthonormal vectors,
tangent to the spin ni, we found it convenient to use the unit
vectors of spherical coordinates θ and ϕ:

T = {eθ , eϕ} =




cos θ cos ϕ − sin ϕ

cos θ sin ϕ cos ϕ

− sin θ 0




=




zx/rxy −y/rxy

zy/rxy x/rxy

−rxy 0


, (H8)

where rxy = sin θ =
√

1 − z2.
Note that the poles need to be excluded, but since the basis

does not need to be continuous over the manifold, one may,
e.g., orthogonalize ex and ey with respect to the spin vector to
obtain suitable tangent vectors.

Finally, the Hessian matrix in the embedding space
E = R

3N is needed, denoted H̄i j |3N . The atomistic Hamilto-
nian can generally be written in matrix form,

H = −
N∑

j

Ai jn j −
∑

〈i j〉

niBi jn j, (H9)

where Ai j are matrices of size 3×3 describing the linear
contributions, such as the Zeeman term, and Bi j are matrices
describing the quadratic contributions, such as anisotropy,
exchange, DMI, and dipolar interactions. The Hessian matrix

FIG. 15. Field of minimum eigenmodes (white lines) of a single
spin in anisotropy and the interaction field of a second, pinned spin,
corresponding to the force fields shown in Fig. 11. The minimum
mode-following paths are shown in gray colors. The dashed lines
show the separation of the convex regions around the minima from
the rest of the configuration space.

is then naturally given by

H̄i j = ∂2
H̄ = −2Bi j . (H10)

APPENDIX I: MINIMUM MODES IN THE INTERACTING

SPIN SYSTEM

Recall Eq. (21) of the main text, which can be written

F eff = −∇H + 2(λ̂ · ∇H)λ̂, (I1)

where (·) denotes the dot product of 3N-dimensional vectors.
Figure 15 illustrates how the minimum eigenmode axis λ̂ is
oriented and in which direction, and therefore, the gradient
force is inverted. Figures 11 and 15 can be compared to
equivalent Cartesian-coordinate figures from molecular cal-
culations in Ref. [67].

Equation (21) describes the reflection of the energy gra-
dient’s component along the mode. Following this force, the
system climbs in energy along the mode, while minimizing
the energy in the orthogonal degrees of freedom. As can be
seen in Fig. 15, the minimum mode reflects the symmetry of
the energy landscape, as it is pointed approximately between
the two minima. This is especially obvious in the area close to
the saddle point. Consequentially, the MMF force acts analo-
gous to the climbing image method [see Eq. (16)], but using
the lowest eigenmode instead of a transition path tangent.
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