001     863297
005     20210130002000.0
024 7 _ |a 10.1104/pp.19.00163
|2 doi
024 7 _ |a 0032-0889
|2 ISSN
024 7 _ |a 1532-2548
|2 ISSN
024 7 _ |a altmetric:60026046
|2 altmetric
024 7 _ |a pmid:31040174
|2 pmid
024 7 _ |a WOS:000473274000027
|2 WOS
037 _ _ |a FZJ-2019-03384
082 _ _ |a 580
100 1 _ |a Khan, Imran
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Calcium-promoted interaction between the C2-domain protein EHB1 and metal transporter IRT1 inhibits Arabidopsis iron acquisition
260 _ _ |a Rockville, Md.
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562831053_29358
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Iron is a key transition element in the biosphere and is crucial for living organisms, although its cellular excess can be deleterious. Maintaining the balance of optimal iron availability in the model plant Arabidopsis (Arabidopsis thaliana) requires the precise operation of iron import through the principal iron transporter IRON-REGULATED TRANSPORTER1 (IRT1). Targeted inhibition of IRT1 can prevent oxidative stress, thus promoting plant survival. Here, we report the identification of an IRT1 inhibitor, namely the C2 domain-containing peripheral membrane protein ENHANCED BENDING1 (EHB1). EHB1 interacts with the cytoplasmically exposed variable region of IRT1, and we demonstrate that this interaction is greatly promoted by the presence of calcium. We found that EHB1 binds lipids characteristic of the plasma membrane, and the interaction between EHB1 and plant membranes is calcium dependent. Molecular simulations showed that EHB1 membrane binding is a two-step process that precedes the interaction between EHB1 and IRT1. Genetic and physiological analyses indicated that EHB1 acts as a negative regulator of iron acquisition. The presence of EHB1 prevented the IRT1-mediated complementation of iron-deficient fet3fet4 yeast. Our data suggest that EHB1 acts as a direct inhibitor of IRT1-mediated iron import into the cell. These findings represent a major step in understanding plant iron acquisition, a process that underlies the primary production of bioavailable iron for land ecosystems.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gratz, Regina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Denezhkin, Polina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schott-Verdugo, Stephan N.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Angrand, Kalina
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Genders, Lara
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Basgaran, Rubek Merina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fink-Straube, Claudia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brumbarova, Tzvetina
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 9
|u fzj
700 1 _ |a Bauer, Petra
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ivanov, Rumen
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1104/pp.19.00163
|g p. pp.00163.2019 -
|0 PERI:(DE-600)2004346-6
|n 3
|p 1564-1581
|t Plant physiology
|v 180
|y 2019
|x 1532-2548
856 4 _ |u https://juser.fz-juelich.de/record/863297/files/1564.full-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863297/files/183.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863297/files/183.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/863297/files/1564.full-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:863297
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT PHYSIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT PHYSIOL : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21