000863322 001__ 863322
000863322 005__ 20210130002018.0
000863322 0247_ $$2doi$$a10.1109/TMI.2019.2921872
000863322 0247_ $$2ISSN$$a0278-0062
000863322 0247_ $$2ISSN$$a1558-0062
000863322 0247_ $$2ISSN$$a1558-254X
000863322 0247_ $$2Handle$$a2128/25525
000863322 0247_ $$2pmid$$apmid:31180843
000863322 0247_ $$2WOS$$aWOS:000506577100013
000863322 037__ $$aFZJ-2019-03402
000863322 082__ $$a620
000863322 1001_ $$0P:(DE-Juel1)169363$$aMa, Bo$$b0$$eCorresponding author$$ufzj
000863322 245__ $$aScatter Correction based on GPU-accelerated Full Monte Carlo Simulation for Brain PET/MRI
000863322 260__ $$aNew York, NY$$bIEEE$$c2020
000863322 3367_ $$2DRIVER$$aarticle
000863322 3367_ $$2DataCite$$aOutput Types/Journal article
000863322 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1597733868_12991
000863322 3367_ $$2BibTeX$$aARTICLE
000863322 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863322 3367_ $$00$$2EndNote$$aJournal Article
000863322 520__ $$aAccurate scatter correction is essential for qualitative and quantitative PET imaging. Until now, scatter correction based on Monte Carlo simulation (MCS) has been recognized as the most accurate method of scatter correction for PET. However, the major disadvantage of MCS is its long computational time, which makes it unfeasible for clinical usage. Meanwhile, single scatter simulation (SSS) is the most widely used method for scatter correction. Nevertheless, SSS has the disadvantage of limited robustness for dynamic measurements and for the measurement of large objects. In this work, a newly developed implementation of MCS using graphics processing unit (GPU) acceleration is employed, allowing full MCS-based scatter correction in clinical 3D brain PET imaging. Starting from the generation of annihilation photons to their detection in the simulated PET scanner, all relevant physical interactions and transport phenomena of the photons were simulated on GPUs. This resulted in an expected distribution of scattered events, which was subsequently used to correct the measured emission data. The accuracy of the approach was validated with simulations using GATE (Geant4 Application for Tomography Emission), and its performance was compared to SSS. The comparison of the computation time between a GPU and a single-threaded CPU showed an acceleration factor of 776 for a voxelized brain phantom study. The speedup of the MCS implemented on the GPU represents a major step toward the application of the more accurate MCS-based scatter correction for PET imaging in clinical routine
000863322 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000863322 588__ $$aDataset connected to CrossRef
000863322 7001_ $$0P:(DE-Juel1)144826$$aGaens, Michaela$$b1
000863322 7001_ $$0P:(DE-Juel1)159195$$aCaldeira, Liliana$$b2$$ufzj
000863322 7001_ $$0P:(DE-HGF)0$$aBert, Julian$$b3
000863322 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b4$$ufzj
000863322 7001_ $$0P:(DE-Juel1)131797$$aTellmann, Lutz$$b5$$ufzj
000863322 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph$$b6$$ufzj
000863322 7001_ $$0P:(DE-Juel1)131791$$aScheins, Jurgen$$b7$$ufzj
000863322 7001_ $$0P:(DE-HGF)0$$aKops, Elena Rota$$b8
000863322 7001_ $$0P:(DE-Juel1)168272$$aXu, Hancong$$b9$$ufzj
000863322 7001_ $$0P:(DE-Juel1)165812$$aLenz, Mirjam$$b10$$ufzj
000863322 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, Uwe$$b11
000863322 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b12$$eCorresponding author$$ufzj
000863322 773__ $$0PERI:(DE-600)2068206-2$$a10.1109/TMI.2019.2921872$$gp. 1 - 1$$n1$$p140-151$$tIEEE transactions on medical imaging$$v39$$x1558-254X$$y2020
000863322 8564_ $$uhttps://juser.fz-juelich.de/record/863322/files/08733836.pdf$$yRestricted
000863322 8564_ $$uhttps://juser.fz-juelich.de/record/863322/files/Post_Print_accepted_manuscript.pdf$$yOpenAccess
000863322 8564_ $$uhttps://juser.fz-juelich.de/record/863322/files/08733836.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863322 909CO $$ooai:juser.fz-juelich.de:863322$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169363$$aForschungszentrum Jülich$$b0$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159195$$aForschungszentrum Jülich$$b2$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b4$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131797$$aForschungszentrum Jülich$$b5$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b6$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131791$$aForschungszentrum Jülich$$b7$$kFZJ
000863322 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a inm4$$b8
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168272$$aForschungszentrum Jülich$$b9$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165812$$aForschungszentrum Jülich$$b10$$kFZJ
000863322 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b12$$kFZJ
000863322 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000863322 9141_ $$y2020
000863322 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863322 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863322 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863322 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T MED IMAGING : 2017
000863322 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863322 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863322 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863322 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863322 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863322 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE T MED IMAGING : 2017
000863322 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863322 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000863322 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863322 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x0
000863322 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000863322 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000863322 980__ $$ajournal
000863322 980__ $$aVDB
000863322 980__ $$aUNRESTRICTED
000863322 980__ $$aI:(DE-Juel1)INM-11-20170113
000863322 980__ $$aI:(DE-Juel1)INM-4-20090406
000863322 980__ $$aI:(DE-82)080010_20140620
000863322 9801_ $$aFullTexts