001     863322
005     20210130002018.0
024 7 _ |a 10.1109/TMI.2019.2921872
|2 doi
024 7 _ |a 0278-0062
|2 ISSN
024 7 _ |a 1558-0062
|2 ISSN
024 7 _ |a 1558-254X
|2 ISSN
024 7 _ |a 2128/25525
|2 Handle
024 7 _ |a pmid:31180843
|2 pmid
024 7 _ |a WOS:000506577100013
|2 WOS
037 _ _ |a FZJ-2019-03402
082 _ _ |a 620
100 1 _ |a Ma, Bo
|0 P:(DE-Juel1)169363
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Scatter Correction based on GPU-accelerated Full Monte Carlo Simulation for Brain PET/MRI
260 _ _ |a New York, NY
|c 2020
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1597733868_12991
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Accurate scatter correction is essential for qualitative and quantitative PET imaging. Until now, scatter correction based on Monte Carlo simulation (MCS) has been recognized as the most accurate method of scatter correction for PET. However, the major disadvantage of MCS is its long computational time, which makes it unfeasible for clinical usage. Meanwhile, single scatter simulation (SSS) is the most widely used method for scatter correction. Nevertheless, SSS has the disadvantage of limited robustness for dynamic measurements and for the measurement of large objects. In this work, a newly developed implementation of MCS using graphics processing unit (GPU) acceleration is employed, allowing full MCS-based scatter correction in clinical 3D brain PET imaging. Starting from the generation of annihilation photons to their detection in the simulated PET scanner, all relevant physical interactions and transport phenomena of the photons were simulated on GPUs. This resulted in an expected distribution of scattered events, which was subsequently used to correct the measured emission data. The accuracy of the approach was validated with simulations using GATE (Geant4 Application for Tomography Emission), and its performance was compared to SSS. The comparison of the computation time between a GPU and a single-threaded CPU showed an acceleration factor of 776 for a voxelized brain phantom study. The speedup of the MCS implemented on the GPU represents a major step toward the application of the more accurate MCS-based scatter correction for PET imaging in clinical routine
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gaens, Michaela
|0 P:(DE-Juel1)144826
|b 1
700 1 _ |a Caldeira, Liliana
|0 P:(DE-Juel1)159195
|b 2
|u fzj
700 1 _ |a Bert, Julian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 4
|u fzj
700 1 _ |a Tellmann, Lutz
|0 P:(DE-Juel1)131797
|b 5
|u fzj
700 1 _ |a Lerche, Christoph
|0 P:(DE-Juel1)164254
|b 6
|u fzj
700 1 _ |a Scheins, Jurgen
|0 P:(DE-Juel1)131791
|b 7
|u fzj
700 1 _ |a Kops, Elena Rota
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Xu, Hancong
|0 P:(DE-Juel1)168272
|b 9
|u fzj
700 1 _ |a Lenz, Mirjam
|0 P:(DE-Juel1)165812
|b 10
|u fzj
700 1 _ |a Pietrzyk, Uwe
|0 P:(DE-Juel1)131667
|b 11
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 12
|e Corresponding author
|u fzj
773 _ _ |a 10.1109/TMI.2019.2921872
|g p. 1 - 1
|0 PERI:(DE-600)2068206-2
|n 1
|p 140-151
|t IEEE transactions on medical imaging
|v 39
|y 2020
|x 1558-254X
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/863322/files/08733836.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863322/files/Post_Print_accepted_manuscript.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/863322/files/08733836.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863322
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159195
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131797
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)164254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131791
910 1 _ |a inm4
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)168272
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)165812
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T MED IMAGING : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE T MED IMAGING : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21