000863370 001__ 863370
000863370 005__ 20240712113109.0
000863370 0247_ $$2doi$$a10.1016/j.jpowsour.2018.05.077
000863370 0247_ $$2ISSN$$a0378-7753
000863370 0247_ $$2ISSN$$a1873-2755
000863370 0247_ $$2WOS$$aWOS:000438001800024
000863370 0247_ $$2Handle$$a2128/25093
000863370 037__ $$aFZJ-2019-03443
000863370 082__ $$a620
000863370 1001_ $$0P:(DE-Juel1)167369$$aZhang, Tong$$b0$$ufzj
000863370 245__ $$aTowards practical sulfolane based electrolytes: Choice of Li salt for graphite electrode operation
000863370 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000863370 3367_ $$2DRIVER$$aarticle
000863370 3367_ $$2DataCite$$aOutput Types/Journal article
000863370 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575010946_25884
000863370 3367_ $$2BibTeX$$aARTICLE
000863370 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863370 3367_ $$00$$2EndNote$$aJournal Article
000863370 520__ $$aSulfolane (tetramethylene sulfone, SL) is known for leading to Li-ion electrolytes with high anodic stability. However, the operation of graphite electrodes in alternative electrolytes is usually challenging, especially when ethylene carbonate (EC) is not used as co-solvent. Thus, we study here the influence of the lithium salt on the physico-chemical and electrochemical properties of EC-free SL-based electrolytes and on the performance of graphite electrodes based on carboxymethyl cellulose (CMC). SL mixed with dimethyl carbonate (DMC) leads to electrolytes as conductive as state-of-the-art alkyl carbonate-based electrolytes with wide electrochemical stability windows. The compatibility with graphite electrodes depends on the Li salt used and, even though cycling is possible with most salts, lithium difluoro-oxalato borate (LiDFOB) is especially interesting for graphite operation. LiDFOB electrolytes are conductive at room temperature (ca. 6 mS cm−1) with an anodic stability slightly below 5 V vs. Li/Li+ on particulate carbon black electrodes. In addition, it allows cycling graphite electrodes with steady capacity and high coulombic efficiency without any additive. The testing of graphite electrodes in half-cells is, however, problematic with SL:DMC mixtures and, by switching the Li metal counter electrode for LiFePO4, the graphite electrode achieves better practical performance in terms of rate capability.
000863370 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863370 588__ $$aDataset connected to CrossRef
000863370 7001_ $$0P:(DE-HGF)0$$aPorcher, Willy$$b1
000863370 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b2$$eCorresponding author
000863370 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.05.077$$gVol. 395, p. 212 - 220$$p212 - 220$$tJournal of power sources$$v395$$x0378-7753$$y2018
000863370 8564_ $$uhttps://juser.fz-juelich.de/record/863370/files/1-s2.0-S0378775318305615-main.pdf$$yRestricted
000863370 8564_ $$uhttps://juser.fz-juelich.de/record/863370/files/1-s2.0-S0378775318305615-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863370 8564_ $$uhttps://juser.fz-juelich.de/record/863370/files/Choice%20of%20Li%20salt%20-%20R2_for%20repository.pdf$$yPublished on 2018-06-15. Available in OpenAccess from 2020-06-15.
000863370 8564_ $$uhttps://juser.fz-juelich.de/record/863370/files/Choice%20of%20Li%20salt%20-%20R2_for%20repository.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-06-15. Available in OpenAccess from 2020-06-15.
000863370 909CO $$ooai:juser.fz-juelich.de:863370$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167369$$aForschungszentrum Jülich$$b0$$kFZJ
000863370 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b2$$kFZJ
000863370 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863370 9141_ $$y2019
000863370 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863370 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863370 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863370 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000863370 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000863370 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000863370 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863370 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863370 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863370 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863370 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863370 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863370 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863370 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863370 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000863370 9801_ $$aFullTexts
000863370 980__ $$ajournal
000863370 980__ $$aVDB
000863370 980__ $$aUNRESTRICTED
000863370 980__ $$aI:(DE-Juel1)IEK-12-20141217
000863370 981__ $$aI:(DE-Juel1)IMD-4-20141217