001     863370
005     20240712113109.0
024 7 _ |a 10.1016/j.jpowsour.2018.05.077
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000438001800024
|2 WOS
024 7 _ |a 2128/25093
|2 Handle
037 _ _ |a FZJ-2019-03443
082 _ _ |a 620
100 1 _ |a Zhang, Tong
|0 P:(DE-Juel1)167369
|b 0
|u fzj
245 _ _ |a Towards practical sulfolane based electrolytes: Choice of Li salt for graphite electrode operation
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1575010946_25884
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sulfolane (tetramethylene sulfone, SL) is known for leading to Li-ion electrolytes with high anodic stability. However, the operation of graphite electrodes in alternative electrolytes is usually challenging, especially when ethylene carbonate (EC) is not used as co-solvent. Thus, we study here the influence of the lithium salt on the physico-chemical and electrochemical properties of EC-free SL-based electrolytes and on the performance of graphite electrodes based on carboxymethyl cellulose (CMC). SL mixed with dimethyl carbonate (DMC) leads to electrolytes as conductive as state-of-the-art alkyl carbonate-based electrolytes with wide electrochemical stability windows. The compatibility with graphite electrodes depends on the Li salt used and, even though cycling is possible with most salts, lithium difluoro-oxalato borate (LiDFOB) is especially interesting for graphite operation. LiDFOB electrolytes are conductive at room temperature (ca. 6 mS cm−1) with an anodic stability slightly below 5 V vs. Li/Li+ on particulate carbon black electrodes. In addition, it allows cycling graphite electrodes with steady capacity and high coulombic efficiency without any additive. The testing of graphite electrodes in half-cells is, however, problematic with SL:DMC mixtures and, by switching the Li metal counter electrode for LiFePO4, the graphite electrode achieves better practical performance in terms of rate capability.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Porcher, Willy
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.jpowsour.2018.05.077
|g Vol. 395, p. 212 - 220
|0 PERI:(DE-600)1491915-1
|p 212 - 220
|t Journal of power sources
|v 395
|y 2018
|x 0378-7753
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/863370/files/1-s2.0-S0378775318305615-main.pdf
856 4 _ |y Restricted
|x pdfa
|u https://juser.fz-juelich.de/record/863370/files/1-s2.0-S0378775318305615-main.pdf?subformat=pdfa
856 4 _ |y Published on 2018-06-15. Available in OpenAccess from 2020-06-15.
|u https://juser.fz-juelich.de/record/863370/files/Choice%20of%20Li%20salt%20-%20R2_for%20repository.pdf
856 4 _ |y Published on 2018-06-15. Available in OpenAccess from 2020-06-15.
|x pdfa
|u https://juser.fz-juelich.de/record/863370/files/Choice%20of%20Li%20salt%20-%20R2_for%20repository.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863370
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167369
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166311
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21