000863371 001__ 863371
000863371 005__ 20240712113109.0
000863371 0247_ $$2doi$$a10.1039/C8EE02093K
000863371 0247_ $$2ISSN$$a1754-5692
000863371 0247_ $$2ISSN$$a1754-5706
000863371 0247_ $$2WOS$$aWOS:000449843300018
000863371 037__ $$aFZJ-2019-03444
000863371 082__ $$a690
000863371 1001_ $$00000-0002-7870-2331$$aNguyen, Huu-Dat$$b0
000863371 245__ $$aNanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries
000863371 260__ $$aCambridge$$bRSC Publ.$$c2018
000863371 3367_ $$2DRIVER$$aarticle
000863371 3367_ $$2DataCite$$aOutput Types/Journal article
000863371 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574953110_25884
000863371 3367_ $$2BibTeX$$aARTICLE
000863371 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863371 3367_ $$00$$2EndNote$$aJournal Article
000863371 520__ $$aThe greatest challenges towards the worldwide success of battery-powered electric vehicles revolve around the safety and energy density of the battery. Single-ion conducting polymer electrolytes address both challenges by replacing the flammable and unstable liquid electrolytes and enabling dendrite-free cycling of high-energy lithium metal anodes. To date, however, their commercial use has been hindered by insufficient ionic conductivities at ambient temperature (commonly not exceeding 10−6 S cm−1) and the limited electrochemical stability towards oxidation, in particular when incorporating ether-type building blocks, limiting their application to rather low-voltage cathode materials like LiFePO4. Here, we introduce ether-free, nanostructured multi-block copolymers as single-ion conducting electrolytes, providing high thermal stability and self-extinguishing properties and, if plasticized with ethylene carbonate, ionic conductivities exceeding 10−3 S cm−1 above 30 °C, i.e., approaching that of state-of-the-art liquid electrolytes. Moreover, these single-ion conducting ionomers present highly reversible lithium cycling for more than 1000 h and, as a result of their excellent electrochemical stability, highly stable cycling of Li[Ni1/3Co1/3Mn1/3]O2 cathodes. To the best of our knowledge, this is the first polymer electrolyte that presents such remarkable ionic conductivity and outstanding electrochemical stability towards both reduction and oxidation, thus, paving the way for advanced high-energy lithium metal batteries. Remarkably, the realization of well-defined continuous ionic domains appears to be the key to efficient charge transport through the electrolyte bulk and across the electrode/electrolyte interface, highlighting the importance of the self-assembling nanostructure. The latter is achieved by carefully (i) designing the copolymer structure, i.e., introducing alternating ionic blocks with a very regular distribution of weakly coordinating anions along the polymer chain and rigid blocks, which are completely immiscible with ethylene carbonate, and (ii) choosing the processing solvent, taking into account its interaction with the different copolymer blocks.
000863371 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863371 588__ $$aDataset connected to CrossRef
000863371 7001_ $$0P:(DE-HGF)0$$aKim, Guk-Tae$$b1
000863371 7001_ $$0P:(DE-Juel1)171272$$aShi, Junli$$b2$$ufzj
000863371 7001_ $$0P:(DE-Juel1)166311$$aPaillard, Elie$$b3$$ufzj
000863371 7001_ $$00000-0002-9617-5707$$aJudeinstein, Patrick$$b4
000863371 7001_ $$0P:(DE-HGF)0$$aLyonnard, Sandrine$$b5$$eCorresponding author
000863371 7001_ $$00000-0001-6429-6048$$aBresser, Dominic$$b6$$eCorresponding author
000863371 7001_ $$0P:(DE-HGF)0$$aIojoiu, Cristina$$b7$$eCorresponding author
000863371 773__ $$0PERI:(DE-600)2439879-2$$a10.1039/C8EE02093K$$gVol. 11, no. 11, p. 3298 - 3309$$n11$$p3298 - 3309$$tEnergy & environmental science$$v11$$x1754-5706$$y2018
000863371 8564_ $$uhttps://juser.fz-juelich.de/record/863371/files/c8ee02093k.pdf$$yRestricted
000863371 8564_ $$uhttps://juser.fz-juelich.de/record/863371/files/c8ee02093k.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863371 909CO $$ooai:juser.fz-juelich.de:863371$$pVDB
000863371 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171272$$aForschungszentrum Jülich$$b2$$kFZJ
000863371 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166311$$aForschungszentrum Jülich$$b3$$kFZJ
000863371 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863371 9141_ $$y2019
000863371 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000863371 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863371 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG ENVIRON SCI : 2017
000863371 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863371 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863371 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863371 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863371 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863371 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863371 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863371 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000863371 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863371 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863371 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bENERG ENVIRON SCI : 2017
000863371 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000863371 980__ $$ajournal
000863371 980__ $$aVDB
000863371 980__ $$aI:(DE-Juel1)IEK-12-20141217
000863371 980__ $$aUNRESTRICTED
000863371 981__ $$aI:(DE-Juel1)IMD-4-20141217