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Abstract

We report the controlled growth of single crystals of intercalated layered Lu1+nFe2+nO4+3n−δ (n=1,2)
with different oxygen stoichiometries δ. For the first time crystals sufficiently stoichiometric to exhibit
superstructure reflections in X-ray diffraction attributable to charge ordering were obtained. The estimated
correlation lengths tend to be smaller than for not intercalated LuFe2O4. For Lu2Fe3O7, two different
superstructures were observed, one an incommensurate zigzag pattern similar to previous observations by
electron diffraction, the other an apparently commensurate pattern with ( 1

3
1
3
0) propagation. Implications

for the possible charge order in the bilayers are discussed. Magnetization measurements suggest reduced
magnetic correlations and the absence of an antiferromagnetic phase.

Keywords:

X-ray diffraction: A1, Rare earth compounds: B1, Charge ordering: A1, Floating zone technique: A2,
Lu2Fe3O7: B1, Lu3Fe4O10: B1

1. Introduction

Rare earth ferrites RFe2O4 have attracted a lot
of attention as proposed multiferroics. In partic-
ular, LuFe2O4 was considered a clear example of
ferroelectricity from charge ordering (CO) of Fe2+

and Fe3+ in the Fe-O bilayers [1], though recently
this was contradicted [2, 3, 4, 5]. Rare earth sub-
stitutions tune the relevant interactions within the
Fe-O bilayers [6] resulting in a similar CO for R =
Yb, which has almost the same ion size as Lu [7, 8]
but a dramatically different CO for the larger Y
[9, 10]. Another way to tune the CO is to focus on
the interactions between different bilayers. This can
be achieved by intercalating single Fe-O layers, in-
creasing the distance bewtwenn the bilayers, which
would reduce the likelihood of ”charged bilayers”
[2] and thus make a ferroelectric CO more likely.
That such intercalations of rare earth ferrites ex-
ist has been known since the 1970s [11, 12, 13, 14],
though few physical properties have been reported
[15, 16, 17, 18, 19, 20].
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In intercalated rare earth ferrites
RFe2O4(RFeO3)n, (RFeO3)n blocks are in-
serted alternately between the Fe-O bilayers (see
Fig. 1), forming a series of compounds that crystal-
lize alternatingly in rhombohedral (R3̄m, n even)
and hexagonal (P63/mmc, n odd) space groups as
found for the Yb-compound in [12, 13, 14]. Each
RFeO3 block contains a mono-layer of Fe-O and
a mono-layer of R-O. The iron ion in R2Fe3O7−δ

(n = 1) has an average valance of 2.67 for δ = 0.
Mössbauer studies [15, 18, 17] indicate that the
Fe-O mono-layer in LuFeO3 block contains only
Fe3+ ions, while the bilayer contains Fe2.5+ as in
LuFe2O4. For n>1 this is also likely the case.

Thus, the CO in the bilayers of intercalated rare
earth ferrites is expected to be very similar as the
CO in not intercalated ones, with the intercalation
serving as another knob to tune the concrete 3D
arrangement. However, the more complex crys-
tal structure makes the synthesis of high quality
single crystals more difficult. This complication
is added to the problem of ensuring the proper
oxygen stoichiometry already noted for not inter-
calated rare earth ferrites, where it was found to
be critical to the elucidation of the CO that is es-
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to the strong magnetic anisotropy reported in [16].
Our crystal (see Fig. 7 left) reveals a ferrimganetic
transition around 200 K in ZFC, with no indication
for an antiferromagnetic phase as found in LuFe2O4

[2]. Moreover, a large difference between ZFC and
FC is noticeable indicating a glassy behavior with-
out long range spin ordering. This suggests that
our crystal exhibits a 3D CO but not 3D spin order
(SO), indicating that the SO is more fragile. A sim-
ilar observation was made before for some crystals
of YbFe2O4 [8]. No thermal hysteresis is present
indicating that no first order transition took place.
This single crystal shows a similar magnetic behav-
ior as polycrsytalline Lu2Fe3O7 in [20], but with
lowering in the peak of the ZFC curve by ∼50 K.

As mentioned above, we expect the same CO as
for LuFe2O4 or YbFe2O4 to be realized in a sin-
gle bilayer in Lu2Fe3O7, and because of the strong
spin-charge coupling [2, 6, 8] the same SO may be
is expected as well. In contrast to LuFe2O4 and
YbFe2O4, where both competing phases of antifer-
romgantic and ferrimagnetic are present that dif-
fer only in the stacking of the bilayer net magne-
tizations [28, 8], our result suggests a preference
for the ferrimagnetic phase to be stabilized in the
Lu2Fe3O7 as a result of the modified magnetic in-
teractions between neighboring bilayers.

6. Conclusion and outlook

Based on our interest of investigating the CO
in the intercalated compound, we succeeded in
growing single crystals of Lu2Fe3O7, but also
Lu3Fe4O10, which are sufficiently stoichiometric to
exhibit for the first time superstructure reflections
indicating the long range charge order. The esti-
mated correlation lengths are smaller than the one
for LuFe2O4. The availability of these crystals open
the door to continue to the refinement of CO and
answering the question of ferroelectricity which is
in progress.
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