000863450 001__ 863450 000863450 005__ 20250129092425.0 000863450 0247_ $$2doi$$a10.1016/j.pnmrs.2019.05.003 000863450 0247_ $$2ISSN$$a0079-6565 000863450 0247_ $$2ISSN$$a1873-3301 000863450 0247_ $$2altmetric$$aaltmetric:62318427 000863450 0247_ $$2pmid$$apmid:31779878 000863450 0247_ $$2WOS$$aWOS:000510432500001 000863450 037__ $$aFZJ-2019-03514 000863450 082__ $$a530 000863450 1001_ $$0P:(DE-Juel1)133861$$aAppelt, S.$$b0$$eCorresponding author 000863450 245__ $$aFrom LASER physics to the para-hydrogen pumped RASER 000863450 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019 000863450 3367_ $$2DRIVER$$aarticle 000863450 3367_ $$2DataCite$$aOutput Types/Journal article 000863450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581067323_25822 000863450 3367_ $$2BibTeX$$aARTICLE 000863450 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000863450 3367_ $$00$$2EndNote$$aJournal Article 000863450 520__ $$aThe properties of the LASER with respect to self-organization are compared with the key features of the p-H2 pumped RASER. According to LASER theory the equations of motion for the LASER can be derived from the enslaving principle, i.e. the slowest-changing order parameter (the light field in the resonator) enslaves the rapidly relaxing atomic degrees of freedom. Likewise, it is shown here that the equations of motion for the p-H2 pumped RASER result from a set of order parameters, where the transverse magnetization of the RASER-active spin states enslaves the electromagnetic modes. The consequences are striking for nuclear magnetic resonance (NMR) spectroscopy, since long-lasting multi-mode RASER oscillations enable unprecedented spectroscopic resolution down to the micro-Hertz regime. Based on the theory for multi-mode RASER operation we analyze the conditions that reveal either the collapse of the entire NMR spectrum, the occurrence of self-organized frequency-combs, or RASER spectra which reflect the J-coupled network of the molecule. Certain RASER experiments involving the protons of 15N pyridine or 3-picoline molecules pumped with p-H2 via SABRE (Signal Amplification By Reversible Exchange) show either a single RASER oscillation in the time domain, giant RASER pulses or a complex RASER beat pattern. The corresponding 1H spectra consist of one narrow line, equidistant narrow lines (frequency-comb), or highly resolved lines reporting NMR properties, respectively. Numerous applications in the areas of material sciences, fundamental physics and medicine involving high precision sensors for magnetic fields, rotational motions or molecular structures become feasible. 000863450 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0 000863450 588__ $$aDataset connected to CrossRef 000863450 7001_ $$0P:(DE-HGF)0$$aKentner, A.$$b1 000863450 7001_ $$0P:(DE-HGF)0$$aLehmkuhl, S.$$b2 000863450 7001_ $$0P:(DE-HGF)0$$aBlümich, B.$$b3 000863450 773__ $$0PERI:(DE-600)1500674-8$$a10.1016/j.pnmrs.2019.05.003$$gVol. 114-115, p. 1 - 32$$p1 - 32$$tProgress in nuclear magnetic resonance spectroscopy$$v114-115$$x0079-6565$$y2019 000863450 8564_ $$uhttps://juser.fz-juelich.de/record/863450/files/RASER_LASER_PNMRS_2019.pdf$$yRestricted 000863450 8564_ $$uhttps://juser.fz-juelich.de/record/863450/files/RASER_LASER_PNMRS_2019.pdf?subformat=pdfa$$xpdfa$$yRestricted 000863450 909CO $$ooai:juser.fz-juelich.de:863450$$pVDB 000863450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b0$$kFZJ 000863450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ 000863450 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0 000863450 9141_ $$y2019 000863450 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000863450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000863450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG NUCL MAG RES SP : 2017 000863450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000863450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000863450 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000863450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000863450 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000863450 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000863450 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROG NUCL MAG RES SP : 2017 000863450 920__ $$lyes 000863450 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0 000863450 980__ $$ajournal 000863450 980__ $$aVDB 000863450 980__ $$aI:(DE-Juel1)ZEA-2-20090406 000863450 980__ $$aUNRESTRICTED 000863450 981__ $$aI:(DE-Juel1)PGI-4-20110106