000863450 001__ 863450
000863450 005__ 20250129092425.0
000863450 0247_ $$2doi$$a10.1016/j.pnmrs.2019.05.003
000863450 0247_ $$2ISSN$$a0079-6565
000863450 0247_ $$2ISSN$$a1873-3301
000863450 0247_ $$2altmetric$$aaltmetric:62318427
000863450 0247_ $$2pmid$$apmid:31779878
000863450 0247_ $$2WOS$$aWOS:000510432500001
000863450 037__ $$aFZJ-2019-03514
000863450 082__ $$a530
000863450 1001_ $$0P:(DE-Juel1)133861$$aAppelt, S.$$b0$$eCorresponding author
000863450 245__ $$aFrom LASER physics to the para-hydrogen pumped RASER
000863450 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000863450 3367_ $$2DRIVER$$aarticle
000863450 3367_ $$2DataCite$$aOutput Types/Journal article
000863450 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581067323_25822
000863450 3367_ $$2BibTeX$$aARTICLE
000863450 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863450 3367_ $$00$$2EndNote$$aJournal Article
000863450 520__ $$aThe properties of the LASER with respect to self-organization are compared with the key features of the p-H2 pumped RASER. According to LASER theory the equations of motion for the LASER can be derived from the enslaving principle, i.e. the slowest-changing order parameter (the light field in the resonator) enslaves the rapidly relaxing atomic degrees of freedom. Likewise, it is shown here that the equations of motion for the p-H2 pumped RASER result from a set of order parameters, where the transverse magnetization of the RASER-active spin states enslaves the electromagnetic modes. The consequences are striking for nuclear magnetic resonance (NMR) spectroscopy, since long-lasting multi-mode RASER oscillations enable unprecedented spectroscopic resolution down to the micro-Hertz regime. Based on the theory for multi-mode RASER operation we analyze the conditions that reveal either the collapse of the entire NMR spectrum, the occurrence of self-organized frequency-combs, or RASER spectra which reflect the J-coupled network of the molecule. Certain RASER experiments involving the protons of 15N pyridine or 3-picoline molecules pumped with p-H2 via SABRE (Signal Amplification By Reversible Exchange) show either a single RASER oscillation in the time domain, giant RASER pulses or a complex RASER beat pattern. The corresponding 1H spectra consist of one narrow line, equidistant narrow lines (frequency-comb), or highly resolved lines reporting NMR properties, respectively. Numerous applications in the areas of material sciences, fundamental physics and medicine involving high precision sensors for magnetic fields, rotational motions or molecular structures become feasible.
000863450 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000863450 588__ $$aDataset connected to CrossRef
000863450 7001_ $$0P:(DE-HGF)0$$aKentner, A.$$b1
000863450 7001_ $$0P:(DE-HGF)0$$aLehmkuhl, S.$$b2
000863450 7001_ $$0P:(DE-HGF)0$$aBlümich, B.$$b3
000863450 773__ $$0PERI:(DE-600)1500674-8$$a10.1016/j.pnmrs.2019.05.003$$gVol. 114-115, p. 1 - 32$$p1 - 32$$tProgress in nuclear magnetic resonance spectroscopy$$v114-115$$x0079-6565$$y2019
000863450 8564_ $$uhttps://juser.fz-juelich.de/record/863450/files/RASER_LASER_PNMRS_2019.pdf$$yRestricted
000863450 8564_ $$uhttps://juser.fz-juelich.de/record/863450/files/RASER_LASER_PNMRS_2019.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863450 909CO $$ooai:juser.fz-juelich.de:863450$$pVDB
000863450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133861$$aForschungszentrum Jülich$$b0$$kFZJ
000863450 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000863450 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000863450 9141_ $$y2019
000863450 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863450 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863450 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPROG NUCL MAG RES SP : 2017
000863450 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863450 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863450 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863450 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863450 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863450 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863450 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPROG NUCL MAG RES SP : 2017
000863450 920__ $$lyes
000863450 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000863450 980__ $$ajournal
000863450 980__ $$aVDB
000863450 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000863450 980__ $$aUNRESTRICTED
000863450 981__ $$aI:(DE-Juel1)PGI-4-20110106