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Abstract. Since vector fields, such as RGB-color, multispectral or hy-
perspectral images, possess only limited algebraic and ordering struc-
tures they do not lend themselves easily to image processing methods.
However, for fields of symmetric matrices a sufficiently elaborate calcu-
lus, that includes, for example, suitable notions of multiplication, supre-
mum/infimum and concatenation with real functions, is available. In this
article a vector field is coded as a matrix field, which is then processed
by means of the matrix valued counterparts of image processing meth-
ods. An approximate decoding step transforms a processed matrix field
back into a vector field. Here we focus on proposing suitable notions of
a pseudo-supremum/infimum of two vectors/colors and a PDE-based di-
lation/erosion process of color images as a proof-of-concept. In principle
there is no restriction on the dimension of the vectors considered. Exper-
iments, mainly on RGB-images for presentation reasons, will reveal the
merits and the shortcomings of the proposed methods.
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1 Introduction

The processing of color images has its intricacies, due to the vectorial nature
of the data and the fact that a channel-wise treatment is in general insuffi-
cient. This already becomes apparent in the fundamental erosion and dilation
processes of mathematical morphology for three-channel images where so-called
false-color phenomena occur [21]. Countless attempts have been made to over-
come these difficulties with a great variety of methods (see [1, 27] for excellent
surveys and [20, 17, 3]), especially for three-channel images, each of it with its
own merits and drawbacks. Nevertheless, image processing methods are in great
demand for multispectral images or for hyperspectral images. The development
of multispectral image processing algorithms is of vital importance in a variety
of applications such as in food safety inspections [26], food quality [22, 18, 23],
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and in archaelogy [15].
For a typical workflow of the processing of hyperspectral images refer to [16,
28] and the references therein. Often these methods are taylormade for images
with a certain fixed number of channels or bands restricting their applicability.
The aim of this article is to provide a unified approach to multi-channel images,
or vectorial data, for that matter, regardless of their dimension. To this end we
assume without loss of generality a multi-channel image as a mapping f of the
image domain Ω into the d-dimensional hyper-cube Qd: f : Ω 7−→ Qd := [0, 1]d

with d ∈ N\{0} . Typical examples are gray-value images (d = 1) and RGB-color
images (d = 3). This setting can be achieved if the intensities of each of the d
recorded frequencies of the multichannel images are normalized to have values in
the interval [0, 1]. However, even RGBα-images are considered to belong to this
class (d = 4), although the meaning of α is not that of a frequency. Nevertheless,
in this article we will refer to such a type of image as a (d-dimensional) multi-
spectral image, and its values in Qd often as multi-colors. We will concentrate on
providing mathematical concepts applicable to multi-spectral images that allow
for the construction of the fundamental building blocks for any numerical image
processing algorithm: linear combinations, multiplication, concatenation with
functions, and fruitful notions of maximum and minimum. Those key-ingredients
are available in the case of so called matrix-fields, where we denote any mapping
F : Ω 7−→ Sym(d) from a two- or three-dimensional image domain Ω into the
real vector space Sym(d) of d × d, symmetric matrices as a field of symmetric
matrices. For the sake of brevity we will refer to them as Sym(d)-valued images,
or even shorter, as Sym(d)-fields. Various methods from scalar image process-
ing have been transferred to the matrix-field setting, resulting in diffusion- or
transport-type evolutions of matrix fields, e.g. [7, 11, 12], as well as semi-order-
based morphological operations, see [5].
The main idea is to rewrite a multi-spectral image as a Sym(d)-field to take
advantage of the image processing concepts available for the later one. Roughly
speaking, this “rewriting” of a color vector c ∈ Qd amounts to taking its outer or
dyadic product with itself c c⊤ ∈ Sym(d). However, one of the challenges will be
to reconstruct a multi-spectral image from the processed Sym(d)-field in a rea-
sonable way such that gray-valued mathematical morphology is preserved. The
basic structure of the processing strategy is depicted in Fig. 1 in the exemplary
case of the pseudo-supremum psup of three-dimensional vectors, resp., their cor-
responding outer product matrices. Since Sym(d)-fields will play a major role

=⇒ × = =⇒ psup
(

,
)

= =⇒

Fig. 1. Proposed processing strategy. Here “=⇒” stands for pre- and post-processing.

in the sequel, the necessary rudiments of matrix fields and their calculus will
be presented in the subsequent section. For further details the reader is referred



A Unified Approach to the Processing of Hyperspectral Images 3

to [11, 12]. We will describe the coding of a multi-spectral image and the cor-
responding decoding of the matrix field in section 3. Based on [11] we provide
in section 4 a short introduction to matrix-valued counterparts of the morpho-
logical PDEs of dilation and erosion and their numerical solution schemes. In
section 5 we report on experiments performed mainly on three-channel images
and on higher dimensional multi-spectral signals as a proof-of-concept, while the
last section 6 is devoted to concluding remarks and an outlook.

2 Rudiments of a Calculus for Symmetric Matrices

For the sake of brevity, we present here only the very basic notions from calculus
of symmetric matrices: For details see [5] and [7]. Any matrix S ∈ Sym(d) can
be diagonalized by means of a suitable orthogonal matrix and, furthermore, all
the eigenvalues are real: S = QDQ⊤ . Here, Q is orthogonal, that is, Q⊤Q =
QQ⊤ = I and D = diag(λ1, . . . , λn) is a diagonal matrix with real entries in
decreasing order, λ1 ≥ . . . ≥ λd. The matrix S is called positive semidefinite if
λ1 ≥ . . . ≥ λd ≥ 0. We will call a matrix with this property a spd-matrix. If the
eigenvalues are strictly positive, the matrix is called positive definite. A matrix
S is negative (semi-)definite if −S is positive (semi-)definite. If the matrix S is
none of the above, then the symmetric matrix is called indefinite. This gives rise
to a partial order “≥” on Sym(d), often referred to as Loewner order (refer to
[2]):

A ≥ B if and only if A−B is positive semidefinite.

Note that Sym(d) with this order is not a lattice. Nevertheless, as it is pointed
out in [6], and in more detail in [5, 8], a rich functional algebraic calculus can
be set up for symmetric matrices. This allows to establish numerous filtering
and analysis methods for such fields in a rather straight forward manner from
their scalar counterparts [11]. We call the matrices psup(A,B) and pinf(A,B) as
defined in Table 1 for A,B ∈ Sym(d) pseudo-supremum resp., pseudo-infimum.
They are the upper, resp., lower matrix valued bounds of smallest, resp., largest
trace, and as such, acceptable replacements for supremum/infimum in this non-
lattice setting, see [10].

3 From Hyperspectral Image to Matrix Field and Back

In this section, we will elaborate on embedding vectorial data of a hyperspectral
image into a field of symmetric matrices, and on the restoration of a hyperspec-
tral image from a (processed) field of positive, symmetric matrices. The key is
the following simple observation:
Suppose the column vector 0 6= c = (c1, . . . , cd) ∈ Qd codes a multi-color, then
the outer or dyadic product cc⊤ is a matrix which is non-negative, symmetric,
and has rank one. It can be seen as a very special autocorrelation matrix of
the vector c. The only non-zero eigenvalue r satisfies r = ‖c‖22 = trace(cc⊤).
Keeping in mind that ‖c‖∞ ≤ 1 ←→ c ∈ Qd, it is not difficult to reconstruct
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Table 1. Transferring elements of scalar valued calculus (middle) to the symmetric
matrix setting (right).

setting scalar valued matrix-valued

function f :

{

R −→ R

x 7→ f(x)
F :

{

Sym(d) −→ Sym(d)

S 7→ Qdiag(f(λ1), . . . , f(λd))Q
⊤

partial ∂ωg, ∂ωS := (∂ωsij)ij ,

derivatives ω ∈ {t, x1, . . . , xd} ω ∈ {t, x1, . . . , xd}

∇g(x) := (∂x1
g(x), . . . , ∂xd

g(x))⊤, ∇G(x) := (∂x1
G(x), . . . , ∂xd

G(x))⊤,

gradient
∇h(x) ∈ R

d ∇H(x) ∈ (Sym(d))d

|h|p := p
√

|h1|p + · · ·+ |hd|p, |H|p := p
√

|H1|p + · · ·+ |Hd|p,

length
|h|p ∈ [0,+∞[ |H|p ∈ {M ∈ Sym(d) |M ≥ 0}

product a · b A • B = 1

2
(AB + BA)

supremum sup(a, b) psup(A,B) = 1

2
(A + B + |A− B|)

infimum inf(a, b) pinf(A,B) = 1

2
(A + B − |A− B|)

the original color vector by performing (theoretically) a spectral decomposition
on cc⊤, providing us with a unique eigenvector v, which belongs to the largest
eigenvalue r, has non-negative entries and euclidean length ‖v‖2 =

√
r. Then

v = c holds. However, between coding and decoding the actual processing hap-
pens, confronting us with matrices of higher than rank one. Although this effect
cannot be avoided completely, some pre- and post-processing steps are in order.

3.1 Vector Data to Matrix Field

The pre-, resp., post-processing of a (multi-)color vector c requires several, no-
tably reversible steps.

1. Renormalization of the color vector c. Let Bp = {v ∈ R
d | ‖v‖p ≤ 1} denote

the unit ball in R
d with respect to the p-norm, p ∈ [1,∞]. Then Qd =

B∞ ∩ {v ∈ R
d |, v1, . . . , vd ≥ 0}. The function

ψ : v 7−→ ‖v‖∞‖v‖2
· v

maps Qd to B2 ∩ {v ∈ R
d |, v1, . . . , vd ≥ 0}.

2. This transform is invertible, with

ψ−1 : v 7−→ ‖v‖2
‖v‖∞

· v .
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The coding of a multispectral image as a matrix field is done by a mapping Φ
defined as follows.

Definition 1. Let f : Ω 7−→ Qd be a d-dimensional multispectral image. Then

define a mapping Φ by

Φ :

{

Qd −→ Sym(d)

c 7−→ ψ(c) · ψ(c)⊤

To each multispectral image f one associates a matrix field F : Ω −→ Sym(d)
simply by concatenating Φ and f : F := Φ ◦ f .

Writing in short ψ = ψ(f(x)) the matrix F (x) = Φ(f(x)) of the color c = f(x)
at pixel x has the form

F (x) = Φ(c) =







ψ2
1 · · · ψ1ψd

...
. . .

...
ψ1ψd · · · ψ2

d






.

Note that the normalisation step pays tribute to the fact that the approach rely-
ing on the scalar and outer product is closly related to the Euclidean norm rather
than the infinity norm the cube Qd alludes to. Next, we list a few properties of
the matrix Φ(c).

1. The matrix Φ(c) has rank 1, and is a positive semidefinite matrix.

2. Due to the renormalization of c via ψ, the matrix Φ(c) = ψ(c)·ψ(c)⊤ satisfies
trace(Φ(c)) ≤ 1 for any color c ∈ Qd .

3. If ‖c‖∞ = 1, then trace(Φ(c)) = 1 .

4. A closer look at the construction of ψ and Φ reveals that ψ and Φ are positive-
homogeneous of degree 1 and 2, respectively:
ψ(t · c) = |t|ψ(c) and Φ(t · c) = |t|2Φ(c) for t ∈ R .

5. The function ψ−1 is positive-homogeneous as well.

6. v is a (right-)eigenvector of Φ(v) with the only non-zero eigenvalue ‖v‖2 .
7. It is important to note that any positive semidefinite rank-1-matrix can be

written as an outer product of a vector v or −v with itself. Hence, we can
recover the generating vector uniquely from a positive semidefinite rank-1-
matrix via spectral decomposition and requiring that e.g. the last component
vd ≥ 0. In other words, Φ can be assumed invertible on its range Φ(Qd).

Gray-scale images are captured in the multispectral setting by the specification
t · (1, . . . , 1) with t ∈ [0, 1]. Therefore, it is this homogeneity that will ensure the
preservation of basic gray-value morphology by the proposed approach. In the
next section, we address the decoding, that is, transforming a spd-matrix field
back into a proper hyperspectral image.
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3.2 Matrix Field to Vector Data: Approximate Inverse of σ

For the decoding of a spd-matrix consisting of rank-1-matrices we simply may
use the inverse Φ−1 available for rank-1-matrices (only). However, in general,
the processing of matrix-fields does not preserve neither the rank-1- nor the spd-
property of its matrices. Precisely, it can happen that the pseudo-supremum and
pseudo-infimum of two rank-1 matrices is not rank-1. Hence, we have to make
do with an approximate inverse mapping Φ←. The construction of Φ← boils
down to extracting from a general Sym(d)-field a field with symmetric rank-1-
matrices. To this end suppose that F (x) is a symmetric matrix at location x.
The Eckart-Young-Mirsky theorem (see [13, 14]) provides us with the best rank-
1 approximation of F (x) with respect to the Frobenius-Norm for matrices: if
λmax(x) is the largest eigenvalue (by absolute value) in the spectrum of F (x)
and v(x) is a corresponding eigenvector with ‖v(x)‖2 = 1 then

F ∗(x) := λmax(x) v(x)v
⊤(x) .

The transition F (x) to F ∗(x) is achieved by terminating the spectral decompo-
sition of F (x) with the first summand:

F (x) =
d
∑

i=1

λi vi(x)vi(x)
⊤ ≈ λmax(x) v(x)v(x)

⊤ = F ∗(x) ,

where (λi)i=1,...,d is arranged in decreasing order. This is a linear projection,
hence, positive homogeneous.
From this field F ∗ we may extract a vector Φ←(F ∗(x)) =

√

λmax(x) v(x) (ac-
cording to property 6). Finally, we may apply the positively homogeneous ψ−1

to such a vector hence obtaining a new vector

ψ−1
(

Φ←(F ∗(x))
)

= ψ−1(
√

λmax(x) v(x)) =
√

λmax(x) · ψ−1(v(x))

=
√

λmax(x)w(x)

as a candidate for the processed color vector at x .

Remark 1. Due to the “geometry” of pseudo-supremum/infimum as a mapping
on symmetric matrices, see [9], numerical experiments revealed that

1 < trace(F ∗(x)) = λmax(x) ≤ 1.05, for d = 3

entailing
√

λmax(x)w(x) /∈ Qd does not represent a color by a small margin. A
fast and “homogeneous” remedy is a rescaling of the rank-1-matrix F ∗(x) with a

factor
(

max(1,
√

λmax(x))
)−1

. Since this happens only for nearly “antagonistic”

colors c1, c2 ∈ Qd with c1 + c2 = (1, . . . , 1) a simple cut-off is a possibly more
convenient choice.
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4 Basic PDE-Driven Morphology

The correspondence between real and matrix calculus allows to formulate matrix
valued partial differential equations (PDEs), and even matrix valued solution
schemes may be gleaned from the real-valued counterparts [5], [11].

4.1 Continuous Morphology: Matrix-Valued PDEs

The matrix valued equivalent of the morphological PDEs ([4, 24]) for dilation (+)
and erosion (−) proposed for symmetric matrices U in [5] reads for U(x, t) ∈
Sym(d):

∂tU = ±|∇U |2 (1)

with U(x, t) ∈ Ω × [0,∞) . We refer to Table 1 for the bar and norm notation.

4.2 Continuous Morphology: Matrix-Valued Solution Scheme

Due to its simplicity we extend the first-order upwind scheme of Rouy and
Tourin [19, 25] (RT-scheme) from gray-scale images to the matrix setting to
solve (1). We denote by unij the gray value of the image u at the pixel centered

at (ihx, jhy) ∈ Ω ⊂ R
2 at the time-level nτ of the evolution with time-step

τ > 0 . The RT-scheme is expressed in a form that allows directly to extend the
coding procedure to the 3D matrix valued setting of Sym(d):

– Instead of gray values unij we employ symmetric matrices Un(ihx, jhy) .
– The max-function used below in a scalar-valued setting, is replaced by its

matrix-valued generalization psup as given in Table 1, and we proceed like-
wise with the min-function and pinf.

– The equation can be extended without major difficulties to 3D matrix fields
Un(ihx, jhy, khz) .

For the sake of brevity we restrict ourselves to morphological dilation, the scheme
for erosion involves only a simple switch of sign, see (1). The abbreviations we
use for forward and backward difference operators are standard, i.e.,

Dx
+u

n
i,j := uni+1,j − uni,j and Dx

−u
n
i,j := uni,j − uni−1,j . (2)

These operators can be defined analogously with respect to the y-direction. The
Rouy-Tourin scheme we exploit here reads

un+1
i,j = uni,j + τ

(

max

(

1

hx
max

(

−Dx
−u

n
i,j , 0

)

,
1

hx
max

(

Dx
+u

n
i,j , 0

)

)2

+ max

(

1

hy
max

(

−Dy
−u

n
i,j , 0

)

,
1

hy
max

(

Dy
+u

n
i,j , 0

)

)2
)1/2

(3)

Its performance is very similar to that of the first-order version of a scheme
of Osher and Sethian. With this machinery at our disposal we will not process
fields of symmetric matrices for their own sake, however. Instead, a color image is
coded as a Sym(d)-field with suitable d = 2, 3, . . . and processed in this “detour
space” before being transformed back.
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5 Numerical Issues and Experiments

A convenient way to calculate the dominating eigenpair (eigenvalue end eigen-
vector) is the robust power method. This method is suited to our setting as we
may expect a small ratio of second largest to largest eigenvalue for the matrices
encountered here. The use of a complete spectral decomposition algorithm is
to costly while unnecessary especially with large matrices resulting from high-
dimensional multi-spectral images. In a first set of experiments we calculate the
psup(c1, c2), resp. pinf(c1, c2) of a pair of colors c1, c2. The first experiments
are concerned with gray-scales, the results confirm that the proposed approach
indeed preserves gray-value morphology. This property is a direct consequence

psup(c1, c2)

c1 c2

pinf(c1, c2)

Fig. 2. The p-supremum of two gray values coincides with the maximum of the two.
The same holds true for their p-infimum resp. minimum.

of the homogeneity of both the transformation of a color vector into a matrix
and the pre- resp. post-processing. Black and white are the extreme gray-values,
as expected. This remains true when a color, for example blue, is involved, as
can be seen in Fig. 3. However, some results for pairs of colors spaced further

psup(c1, c2)

c1 c2

pinf(c1, c2)

Fig. 3. The p-supremum/infimum involving the color blue. The p-supremum of the two
shades of blue coincides with their maximum. The same holds true for their p-infimum
resp. minimum.

apart in the RGB-cube are less intuitive, as Fig. 4 reveals. Still, the role of black
and white as extreme colors is supported. The outer product of two vectors is a
non-linear mapping, hence, it might be instructive to compare the linear combi-
nation of two colors (as vectors) with the pseudo-combination of colors via the
matrix-valued setting. Some results are depicted in Fig. 5. In Fig. 6 processing
of a real-world RGB image with our method is displayed. It is clearly visible
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psup(c1, c2)

c1 c2

pinf(c1, c2)

Fig. 4. P -supremum, p-infimum of colors differing significantly in the RGB-cube.

c1

c1

2
+ c2

2

c1

2
⊕

c2

2

c2

Fig. 5. Averages of pairs of colors c1, c2: standard average c1

2
+ c2

2
vs. average of the

corresponding matrices, indicated by c1

2
⊕

c2

2
.

Fig. 6. Morphology on real-world color images. Top left: Original image, 512 × 340
pixels, RGB. Top right:Dilation with stopping time t = 2. Bottom left: Internal gradient
with stopping time t = 1. Bottom right: External gradient with stopping time t = 1.

that the dilation, internal gradient and external gradient behave as expected for
color images. Our second experiment with real-world data displays a section of
a printed circuit board with electronic components and labels (cf. Fig. 7). With
a white top hat, small bright structures in different colors on darker background,
like the conductor paths or the component labelling, are extracted. A morpho-
logical shock filter locally choses an dilation or erosion, depending on the sign
of the dominant eigenvalue of the morphological Laplacian and clearly sharp-
ens the edges of the image. Of course, the question remains whether the new
colors make sense from the perceptional point of view. Proceeding to the multi-
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Fig. 7. Morphology on real-world color images. Left: Original image, 300× 200 pixels,
RGB. Middle: White top hat with stopping time t = 1. Right: Morphological shock
filter with stopping time t = 1.

Fig. 8. Images show the performance of the proposed method for some pairs of multicol-
ors, starting from “separated” colors (left) reaching over “weakly separated” (middle)
to “interlaced” colors (right). Cyan and gold color indicate the original multicolor,
while red and blue represent their pseudo-supremum, resp., pseudo-infimum. In the
“separated” case left, p-supremum and p-infimum cover the original multi-colors.

channel case, we represent multi-colors as points in a x− y−coordinate system,
each point representing a channel. The first experiment in Fig. 8 (left) justi-
fies that the pseudo-supreum/pseudo-infimum of two multi-colors deserve their
name: if one vector dominates the other componentwise, their pseudo-supremum
coincides with the dominating one, while the pseudo-infimum is equal to the
dominated vector. However, the proposed method does not act componentwise,
hence, some counter-intuitive results might occur, as further experiments reveal,
see Fig. 8. We will use the matrix valued version of the Rouy-Tourin-scheme, m-
RT-scheme for short, to perform PDE-driven dilation processes in the “detour”-
space Sym(d). A further investigation how the method scales complexity-wise
when the number of channels increases to hundreds has to be investigated in the
future.

6 Summary

The proposed unifying approach to the processing of vector valued data, such
as color- and multi-spectral images, takes advantage of the methods already
available for fields of symmetric matrices. A vector field is coded as a matrix
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field which is then processed and finally transformed back into a vector field.
However, the embedding of a vector field into a matrix field via the outer product
of vectors requires pre- and post-processing of the results to allow for a consistent
reconstruction of the vectors from the matrices in such a way that gray scale
images (as special color-images) are processed according to standard gray-value
morphology. Indeed, the methods presented boil down to gray value morphology
when applied to gray-scale images. The experiments confirm the applicability of
the methods to RGB-images and indicate their conceptual usefulness in the case
of multispectral data. Future research will deal with challenging applications to
real hyperspectral images, the intricacies of the pre- and post-processing, and,
most importantly, the modeling of inter-channel correlations.
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