000863475 001__ 863475
000863475 005__ 20210130002131.0
000863475 0247_ $$2doi$$a10.1002/mrm.27796
000863475 0247_ $$2ISSN$$a0740-3194
000863475 0247_ $$2ISSN$$a1522-2594
000863475 0247_ $$2pmid$$apmid:31241224
000863475 0247_ $$2WOS$$aWOS:000483917000019
000863475 0247_ $$2altmetric$$aaltmetric:63824746
000863475 037__ $$aFZJ-2019-03529
000863475 082__ $$a610
000863475 1001_ $$0P:(DE-Juel1)168245$$aBuschbeck, Richard P.$$b0
000863475 245__ $$a3D rigid-body motion information from spherical Lissajous navigators at small k-space radii: A proof of concept
000863475 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2019
000863475 3367_ $$2DRIVER$$aarticle
000863475 3367_ $$2DataCite$$aOutput Types/Journal article
000863475 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563200247_12078
000863475 3367_ $$2BibTeX$$aARTICLE
000863475 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863475 3367_ $$00$$2EndNote$$aJournal Article
000863475 520__ $$aPurposeTo demonstrate, for the first time, the feasibility of obtaining low‐latency 3D rigid‐body motion information from spherical Lissajous navigators acquired at extremely small k‐space radii, which has significant advantages compared with previous techniques.Theory and MethodsA spherical navigator concept is proposed in which the surface of a k‐space sphere is sampled on a 3D Lissajous curve at a radius of 0.1/cm. The navigator only uses a single excitation and is acquired in less than 5 ms. Rotation estimations were calculated with an algorithm from computer vision that exploits a rotation theorem of the spherical harmonics transform and has minimal computational cost. The effectiveness of the concept was investigated with phantom and in vivo measurements on a commercial 3T MRI scanner.ResultsScanner‐induced in vivo motion was measured with maximum absolute errors of 0.58° and 0.33 mm for rotations and translations, respectively. In the case of real, in vivo motion, the proposed method showed good agreement with motion information from FSL image registrations (mean/maximum deviations of 0.37°/1.24° and 0.44 mm/1.35 mm). In addition, phantom measurements indicated precisions of 0.014° and 0.013 mm. The computations for complete motion information took, on average, 24 ms on an ordinary laptop.
000863475 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000863475 588__ $$aDataset connected to CrossRef
000863475 7001_ $$0P:(DE-Juel1)141899$$aYun, Seong Dae$$b1$$ufzj
000863475 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$eCorresponding author$$ufzj
000863475 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.27796$$n4$$p1462-1470$$tMagnetic resonance in medicine$$v84$$x0740-3194$$y2019
000863475 8564_ $$uhttps://juser.fz-juelich.de/record/863475/files/Buschbeck_et_al-2019-Magnetic_Resonance_in_Medicine.pdf$$yRestricted
000863475 8564_ $$uhttps://juser.fz-juelich.de/record/863475/files/Buschbeck_et_al-2019-Magnetic_Resonance_in_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863475 909CO $$ooai:juser.fz-juelich.de:863475$$pVDB
000863475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168245$$aForschungszentrum Jülich$$b0$$kFZJ
000863475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141899$$aForschungszentrum Jülich$$b1$$kFZJ
000863475 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000863475 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000863475 9141_ $$y2019
000863475 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863475 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2017
000863475 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863475 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863475 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863475 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863475 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863475 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863475 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000863475 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000863475 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863475 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863475 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000863475 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000863475 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000863475 980__ $$ajournal
000863475 980__ $$aVDB
000863475 980__ $$aI:(DE-Juel1)INM-4-20090406
000863475 980__ $$aI:(DE-Juel1)INM-11-20170113
000863475 980__ $$aI:(DE-82)080010_20140620
000863475 980__ $$aUNRESTRICTED