000863478 001__ 863478
000863478 005__ 20210329082428.0
000863478 0247_ $$2Handle$$a2128/22400
000863478 0247_ $$2ISSN$$a1866-1807
000863478 020__ $$a978-3-95806-408-9
000863478 037__ $$aFZJ-2019-03532
000863478 041__ $$aEnglish
000863478 1001_ $$0P:(DE-Juel1)161204$$aBuhl, Patrick Markus$$b0$$eCorresponding author$$gmale$$ufzj
000863478 245__ $$aTopological transport in non-Abelian spin textures from first principles$$f- 2019-06-19
000863478 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zetralbibliothek, Verlag$$c2019
000863478 300__ $$aVII, 158 S.
000863478 3367_ $$2DataCite$$aOutput Types/Dissertation
000863478 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000863478 3367_ $$2ORCID$$aDISSERTATION
000863478 3367_ $$2BibTeX$$aPHDTHESIS
000863478 3367_ $$02$$2EndNote$$aThesis
000863478 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1561708111_3574
000863478 3367_ $$2DRIVER$$adoctoralThesis
000863478 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v197
000863478 502__ $$aRWTH Aachen, Diss., 2019$$bDr.$$cRWTH Aachen$$d2019
000863478 520__ $$aRecently, skyrmions attracted huge attention due to their topological character which ensures surprisingly stable, particle-like magnetic excitations on small scales with distinctive dynamical properties. Their characteristic transport signature—the topological Hall effect—has become an established tool for detection of topologically non-trivial ferromagnetic textures. However,this attribute vanishes when considering degenerate antiferromagnetic structures as theassociated emergent magnetic field is spin-dependent. This thesis demonstrates the emergence of an alternative transport signature in case of antiferromagnetic skyrmion textures—the topological spin Hall effect. Firstly, a computational scheme is developed which estimates the topological spin Hall effect based on semiclassical wave-packet dynamics. In the adiabatic limit, their equations of motion allow to treat large-scale magnetic textures on top of locally collinear, small-scale Hamiltonians, here based on density functional theory. Transport expressions are extracted by combination of the equations of motion and the Boltzmann formalism. While the analogous procedure is straightforward for ferromagnetic materials, the wave-packet’s $\textit{SU}$(2)-nature, caused by degenerate bands, results in additional spin dynamics and non-abelian Berry curvatures which inhibit direct transport evaluation. While the reciprocal-space dynamics are treated on the Boltzmann level, the spin and real-space dynamics are solved iteratively starting from multiple initial positions. Evaluation of the traversed paths results in integrated expressions for the topological spin Hall effect. Sizable topological spin Hall responses are predicted in simulations for the exemplary Fe/Cu/Fe-trilayers and thin chromium layers when artificially imprinting synthetic and intrinsic antiferromagnetic skyrmions, respectively. The importance of the non-abelian dynamics is demonstrated by large differences relative to comparative calculations of decoupled antiparallel ferromagnets. While the spin evolution results in surprisingly homogeneous transport modifications, the $\textbf{k}$-resolved intra-band overlap has a particularly unpredictable distribution requiring precise density functional theory calculations. Further numerical thoroughness isrequired because of extreme sensitivity with respect to small reciprocal-space modificationssuch as slight Fermi energy changes. Furthermore, the evolution of the $\textbf{k}$-dependent transport and overlap properties is shown with respect to thickness variations demonstrating rich tuning potential. Conversely, multiple calculations modifying the skyrmion-radius, -shape, and -density demonstrate the topological invariance of the topological spin Hall effect. Overall, the topological spin Hall effect is an interesting phenomenon with rich application possibilities. Foremost, it facilitates the discovery of the so far undetected antiferromagnetic skyrmions, but also might provide efficient spin-current generation as required in spintronic applications. Alternatively, it could serve as read-out mechanism of more complex devices like antiferromagnetic, skyrmion-based racetrack memory. Hence, the developed versatile and readily applicable computational scheme is a great addition for future antiferromagnetics kyrmion studies.
000863478 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000863478 8564_ $$uhttps://juser.fz-juelich.de/record/863478/files/Schluesseltech_197.pdf$$yOpenAccess
000863478 8564_ $$uhttps://juser.fz-juelich.de/record/863478/files/Schluesseltech_197.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863478 909CO $$ooai:juser.fz-juelich.de:863478$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863478 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863478 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863478 9141_ $$y2019
000863478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161204$$aForschungszentrum Jülich$$b0$$kFZJ
000863478 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000863478 920__ $$lyes
000863478 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000863478 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000863478 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000863478 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000863478 980__ $$aphd
000863478 980__ $$aVDB
000863478 980__ $$aUNRESTRICTED
000863478 980__ $$abook
000863478 980__ $$aI:(DE-Juel1)IAS-1-20090406
000863478 980__ $$aI:(DE-Juel1)PGI-1-20110106
000863478 980__ $$aI:(DE-82)080009_20140620
000863478 980__ $$aI:(DE-82)080012_20140620
000863478 9801_ $$aFullTexts