000863484 001__ 863484
000863484 005__ 20240619091249.0
000863484 0247_ $$2doi$$a10.1063/1.5093138
000863484 0247_ $$2ISSN$$a0021-8979
000863484 0247_ $$2ISSN$$a0148-6349
000863484 0247_ $$2ISSN$$a1089-7550
000863484 0247_ $$2ISSN$$a1520-8850
000863484 0247_ $$2ISSN$$a2163-5102
000863484 0247_ $$2Handle$$a2128/22721
000863484 0247_ $$2altmetric$$aaltmetric:62784204
000863484 0247_ $$2WOS$$aWOS:000474439600019
000863484 037__ $$aFZJ-2019-03538
000863484 082__ $$a530
000863484 1001_ $$0P:(DE-Juel1)161308$$aDai, Y.$$b0
000863484 245__ $$aSynaptic-like conductivity and plasticity in epitaxially strained SrTiO 3 films
000863484 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2019
000863484 3367_ $$2DRIVER$$aarticle
000863484 3367_ $$2DataCite$$aOutput Types/Journal article
000863484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568038034_22204
000863484 3367_ $$2BibTeX$$aARTICLE
000863484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863484 3367_ $$00$$2EndNote$$aJournal Article
000863484 520__ $$aIn this work we use epitaxial strain and an asymmetric electrode design to engineer the conductivity of SrTiO3 thin films in order to use them as active components in planar artificial synaptic devices. First, the tensile strain imposed by the rare-earth scandate substrate on epitaxial grown SrTiO3 films results in a significant increase of the conductivity of the SrTiO3. Second, a further enhancement of the conductivity is obtained by the use of Ti/Pt electrodes. Finally, the asymmetric electrode design consisting of a flat and a tapered electrode ensures the asymmetric response and plasticity of electronic synapse.  The modifications of the conductivity are explained in terms of changes in the density and mobility of oxygen vacancies. The resulting electronic synapses (e-synapse) show memristor behavior as well as the plasticity of the signal which both are essential characteristics of a synapse. Similar to the synaptic long-term and short-term potentiation/depression, our SrTiO3 e-synapses show two different types of plasticity,  a fast process associated with the ionic dipole formation (relaxation time in the 100 ps regime) and a slow process defined by the mobility of oxygen vacancies (relaxation time of several seconds).
000863484 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000863484 588__ $$aDataset connected to CrossRef
000863484 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b1
000863484 7001_ $$0P:(DE-Juel1)128856$$aTrellenkamp, S.$$b2
000863484 7001_ $$0P:(DE-Juel1)128617$$aMussler, G.$$b3
000863484 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, R.$$b4$$eCorresponding author
000863484 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5093138$$gVol. 125, no. 24, p. 245106 -$$n24$$p245106 -$$tJournal of applied physics$$v125$$x1089-7550$$y2019
000863484 8564_ $$uhttps://juser.fz-juelich.de/record/863484/files/1.5093138.pdf$$yPublished on 2019-06-26. Available in OpenAccess from 2020-06-26.
000863484 8564_ $$uhttps://juser.fz-juelich.de/record/863484/files/2019-06-27%20Manuscript.pdf$$yPublished on 2019-06-26. Available in OpenAccess from 2020-06-26.
000863484 8564_ $$uhttps://juser.fz-juelich.de/record/863484/files/1.5093138.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-26. Available in OpenAccess from 2020-06-26.
000863484 8564_ $$uhttps://juser.fz-juelich.de/record/863484/files/2019-06-27%20Manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-06-26. Available in OpenAccess from 2020-06-26.
000863484 909CO $$ooai:juser.fz-juelich.de:863484$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich$$b0$$kFZJ
000863484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich$$b1$$kFZJ
000863484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128856$$aForschungszentrum Jülich$$b2$$kFZJ
000863484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich$$b3$$kFZJ
000863484 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich$$b4$$kFZJ
000863484 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000863484 9141_ $$y2019
000863484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863484 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863484 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000863484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2017
000863484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863484 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863484 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863484 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863484 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863484 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863484 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863484 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863484 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000863484 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863484 920__ $$lno
000863484 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000863484 9801_ $$aFullTexts
000863484 980__ $$ajournal
000863484 980__ $$aVDB
000863484 980__ $$aUNRESTRICTED
000863484 980__ $$aI:(DE-Juel1)ICS-8-20110106
000863484 981__ $$aI:(DE-Juel1)IBI-3-20200312