000863488 001__ 863488
000863488 005__ 20220930130213.0
000863488 0247_ $$2doi$$a10.1088/1361-6560/ab266b
000863488 0247_ $$2ISSN$$a0031-9155
000863488 0247_ $$2ISSN$$a1361-6560
000863488 0247_ $$2Handle$$a2128/22570
000863488 0247_ $$2altmetric$$aaltmetric:63656178
000863488 0247_ $$2pmid$$apmid:31158824
000863488 0247_ $$2WOS$$aWOS:000475775200005
000863488 037__ $$aFZJ-2019-03542
000863488 082__ $$a530
000863488 1001_ $$0P:(DE-Juel1)168272$$aXu, Hancong$$b0$$eCorresponding author$$ufzj
000863488 245__ $$aResolution modeling in projection space using a factorized multi-block detector response function for PET image reconstruction
000863488 260__ $$aBristol$$bIOP Publ.$$c2019
000863488 3367_ $$2DRIVER$$aarticle
000863488 3367_ $$2DataCite$$aOutput Types/Journal article
000863488 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582095643_3364
000863488 3367_ $$2BibTeX$$aARTICLE
000863488 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863488 3367_ $$00$$2EndNote$$aJournal Article
000863488 520__ $$aPositron emission tomography (PET) images usually suffer from limited resolution and statistical uncertainties. However, a technique known as resolution modeling (RM) can be used to improve image quality by accurately modeling the system's detection process within the iterative reconstruction. In this study, we present an accurate RM method in projection space based on a simulated multi-block detector response function (DRF) and evaluate it on the Siemens hybrid MR-BrainPET system. The DRF is obtained using GATE simulations that consider nearly all the possible annihilation photons from the field-of-view (FOV). Intrinsically, the multi-block DRF allows the block crosstalk to be modeled. The RM blurring kernel is further generated by factorizing the blurring matrix of one line-of-response (LOR) into two independent detector responses, which can then be addressed with the DRF. Such a kernel is shift-variant in 4D projection space without any distance or angle compression, and is integrated into the image reconstruction for the BrainPET insert with single instruction multiple data (SIMD) and multi-thread support. Evaluation of simulations and measured data demonstrate that the reconstruction with RM yields significantly improved resolutions and reduced mean squared error (MSE) values at different locations of the FOV, compared with reconstruction without RM. Furthermore, the shift-variant RM kernel models the varying blurring intensity for different LORs due to the depth-of-interaction (DOI) dependencies, thus avoiding severe edge artifacts in the images. Additionally, compared to RM in single-block mode, the multi-block mode shows significantly improved resolution and edge recovery at locations beyond 10 cm from the center of BrainPET insert in the transverse plane. However, the differences have been observed to be low for patient data between single-block and multi-block mode RM, due to the brain size and location as well as the geometry of the BrainPET insert. In conclusion, the RM method proposed in this study can yield better reconstructed images in terms of resolution and MSE value, compared to conventional reconstruction without RM
000863488 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000863488 536__ $$0G:(DE-Juel1)jinm40_20160501$$aModelling Realistic Distributions for High-Resolution Positron Emission Tomography (PET) (jinm40_20160501)$$cjinm40_20160501$$fModelling Realistic Distributions for High-Resolution Positron Emission Tomography (PET)$$x1
000863488 588__ $$aDataset connected to CrossRef
000863488 7001_ $$0P:(DE-Juel1)165812$$aLenz, Mirjam$$b1$$ufzj
000863488 7001_ $$0P:(DE-Juel1)159195$$aCaldeira, Liliana$$b2$$ufzj
000863488 7001_ $$0P:(DE-HGF)0$$aBo, Ma$$b3
000863488 7001_ $$0P:(DE-Juel1)131667$$aPietrzyk, Uwe$$b4
000863488 7001_ $$0P:(DE-Juel1)164254$$aLerche, Christoph W$$b5
000863488 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim Jon$$b6$$ufzj
000863488 7001_ $$0P:(DE-HGF)0$$aScheins, Juergen J$$b7
000863488 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ab266b$$n14$$p145012$$tPhysics in medicine and biology$$v64$$x1361-6560$$y-
000863488 8564_ $$uhttps://juser.fz-juelich.de/record/863488/files/Xu_2019_Phys._Med._Biol._64_145012.pdf$$yOpenAccess
000863488 8564_ $$uhttps://juser.fz-juelich.de/record/863488/files/Xu_2019_Phys._Med._Biol._64_145012.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863488 8767_ $$92019-05-29$$d2019-06-27$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pPMB-108764.R1
000863488 909CO $$ooai:juser.fz-juelich.de:863488$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168272$$aForschungszentrum Jülich$$b0$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165812$$aForschungszentrum Jülich$$b1$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159195$$aForschungszentrum Jülich$$b2$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164254$$aForschungszentrum Jülich$$b5$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b6$$kFZJ
000863488 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b7$$kFZJ
000863488 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000863488 9141_ $$y2019
000863488 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000863488 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863488 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000863488 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863488 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2017
000863488 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863488 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863488 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863488 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863488 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863488 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863488 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863488 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863488 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863488 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863488 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863488 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000863488 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000863488 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000863488 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000863488 980__ $$ajournal
000863488 980__ $$aVDB
000863488 980__ $$aI:(DE-Juel1)INM-4-20090406
000863488 980__ $$aI:(DE-Juel1)INM-11-20170113
000863488 980__ $$aI:(DE-82)080010_20140620
000863488 980__ $$aI:(DE-82)080012_20140620
000863488 980__ $$aAPC
000863488 980__ $$aUNRESTRICTED
000863488 9801_ $$aAPC
000863488 9801_ $$aFullTexts