000863489 001__ 863489
000863489 005__ 20220930130213.0
000863489 0247_ $$2doi$$a10.1088/2053-1583/ab2926
000863489 0247_ $$2Handle$$a2128/22592
000863489 0247_ $$2altmetric$$aaltmetric:63041327
000863489 0247_ $$2WOS$$aWOS:000476954200005
000863489 037__ $$aFZJ-2019-03543
000863489 041__ $$aEnglish
000863489 082__ $$a530
000863489 1001_ $$0P:(DE-Juel1)165989$$aFelter, Janina$$b0
000863489 245__ $$aIn-situ study of two-dimensional dendritic growth of hexagonal boron nitride
000863489 260__ $$aBristol$$bIOP Publ.$$c2019
000863489 3367_ $$2DRIVER$$aarticle
000863489 3367_ $$2DataCite$$aOutput Types/Journal article
000863489 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582035557_32368
000863489 3367_ $$2BibTeX$$aARTICLE
000863489 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863489 3367_ $$00$$2EndNote$$aJournal Article
000863489 520__ $$aHexagonal boron nitride, often entitled the "white graphene" because of its large band gap, is one of the most important two-dimensional (2D) materials and frequently investigated in context with stacked arrays of single 2D layers, so called van der Waals heterostructures. Here, we concentrate on the growth of hBN on the coinage metal surface Cu(111). Using low energy electron microscopy and diffraction, we investigate the self-terminated growth of the first layer in-situ and in real time. Most prominently, we find dendritic structures with three strongly preferred growth branches that are mostly well aligned with the Cu(111) substrate and exhibit a three-fold symmetric shape. The observation of dendritic structures is very surprising since hBN was found to grow in compact, triangular-shaped islands on many other metal substrates, in particular, on transition metal surfaces where it shows a much stronger interaction to the surface. We explain the unexpected dendritic growth by an asymmetry of the bonding energy for the two possible ways a borazine molecule can attach to an existing hBN island, namely either with one of its boron or one of its nitrogen atoms. We suggest that this asymmetry originates from different dehydrogenation states of the adsorbed borazine molecules and the hBN islands. We call this mechanism "Dehydrogenation Limited Aggregation'' since it is generic in the sense that it is merely based on different dehydrogenation energies for the involved building blocks forming the 2D layer.
000863489 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000863489 588__ $$aDataset connected to CrossRef
000863489 7001_ $$0P:(DE-Juel1)172607$$aRaths, Miriam$$b1
000863489 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b2
000863489 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b3$$eCorresponding author
000863489 773__ $$0PERI:(DE-600)2779376-X$$a10.1088/2053-1583/ab2926$$n4$$p045005$$t2D Materials$$v6$$x2053-1583$$y2019
000863489 8564_ $$uhttps://juser.fz-juelich.de/record/863489/files/Felter_2019_2D_Mater._6_045005.pdf$$yOpenAccess
000863489 8564_ $$uhttps://juser.fz-juelich.de/record/863489/files/Felter_2019_2D_Mater._6_045005.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863489 8767_ $$92019-06-06$$d2019-06-27$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$p2DM-103850.R1
000863489 909CO $$ooai:juser.fz-juelich.de:863489$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000863489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165989$$aForschungszentrum Jülich$$b0$$kFZJ
000863489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172607$$aForschungszentrum Jülich$$b1$$kFZJ
000863489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161374$$aForschungszentrum Jülich$$b2$$kFZJ
000863489 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b3$$kFZJ
000863489 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000863489 9141_ $$y2019
000863489 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000863489 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863489 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$b2D MATER : 2017
000863489 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863489 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$b2D MATER : 2017
000863489 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863489 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000863489 980__ $$ajournal
000863489 980__ $$aVDB
000863489 980__ $$aI:(DE-Juel1)PGI-3-20110106
000863489 980__ $$aAPC
000863489 980__ $$aUNRESTRICTED
000863489 9801_ $$aAPC
000863489 9801_ $$aFullTexts