000863490 001__ 863490
000863490 005__ 20220930130214.0
000863490 0247_ $$2doi$$a10.1088/1361-648X/ab2d09
000863490 0247_ $$2ISSN$$a0953-8984
000863490 0247_ $$2ISSN$$a1361-648X
000863490 0247_ $$2Handle$$a2128/22723
000863490 0247_ $$2altmetric$$aaltmetric:65723459
000863490 0247_ $$2pmid$$apmid:31242473
000863490 0247_ $$2WOS$$aWOS:000484117400001
000863490 037__ $$aFZJ-2019-03544
000863490 041__ $$aEnglish
000863490 082__ $$a530
000863490 1001_ $$0P:(DE-Juel1)140276$$aWagner, Christian$$b0$$eCorresponding author
000863490 245__ $$aThe theory of scanning quantum dot microscopy
000863490 260__ $$aBristol$$bIOP Publ.80390$$c2019
000863490 3367_ $$2DRIVER$$aarticle
000863490 3367_ $$2DataCite$$aOutput Types/Journal article
000863490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1568040001_22205
000863490 3367_ $$2BibTeX$$aARTICLE
000863490 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863490 3367_ $$00$$2EndNote$$aJournal Article
000863490 520__ $$aElectrostatic forces are among the most common interactions in nature and omnipresent at the nanoscale. Scanning probe methods represent a formidable approach to study these interactions locally. The lateral resolution of such images is, however, often limited as they are based on measuring the force (gradient) due to the entire tip interacting with the entire surface. Recently, we developed scanning quantum dot microscopy (SQDM), a new technique for the imaging and quantification of surface potentials which is based on the gating of a nanometer-size tip-attached quantum dot by the local surface potential and the detection of charge state changes via non-contact atomic force microscopy. Here, we present a rigorous formalism in the framework of which SQDM can be understood and interpreted quantitatively. In particular, we present a general theory of SQDM based on the classical boundary value problem of electrostatics, which is applicable to the full range of sample properties (conductive vs insulating, nanostructured vs homogeneously covered). We elaborate the general theory into a formalism suited for the quantitative analysis of images of nanostructured but predominantly flat and conductive samples.
000863490 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000863490 588__ $$aDataset connected to CrossRef
000863490 7001_ $$0P:(DE-Juel1)128791$$aTautz, F Stefan$$b1$$ufzj
000863490 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/ab2d09$$p475901$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000863490 8564_ $$uhttps://juser.fz-juelich.de/record/863490/files/Wagner_2019_The%20theory%20of%20scanning%20quantum%20dot%20microscopy_J._Phys.__Condens._Matter_31_475901.pdf$$yOpenAccess
000863490 8564_ $$uhttps://juser.fz-juelich.de/record/863490/files/Wagner_2019_The%20theory%20of%20scanning%20quantum%20dot%20microscopy_J._Phys.__Condens._Matter_31_475901.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863490 8767_ $$92019-06-25$$d2019-06-27$$eHybrid-OA$$jOffsetting$$lOffsetting: IOP$$pJPCM-114016.R1
000863490 909CO $$ooai:juser.fz-juelich.de:863490$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000863490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140276$$aForschungszentrum Jülich$$b0$$kFZJ
000863490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b1$$kFZJ
000863490 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000863490 9141_ $$y2019
000863490 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000863490 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863490 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000863490 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863490 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863490 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863490 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863490 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863490 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863490 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863490 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863490 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863490 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863490 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863490 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000863490 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000863490 980__ $$ajournal
000863490 980__ $$aVDB
000863490 980__ $$aUNRESTRICTED
000863490 980__ $$aI:(DE-Juel1)PGI-3-20110106
000863490 980__ $$aI:(DE-82)080009_20140620
000863490 980__ $$aAPC
000863490 9801_ $$aAPC
000863490 9801_ $$aFullTexts