001     863492
005     20210130002144.0
024 7 _ |a 10.1242/dmm.039065
|2 doi
024 7 _ |a 1754-8403
|2 ISSN
024 7 _ |a 1754-8411
|2 ISSN
024 7 _ |a 2128/22402
|2 Handle
024 7 _ |a pmid:31064773
|2 pmid
024 7 _ |a WOS:000470069500010
|2 WOS
037 _ _ |a FZJ-2019-03546
082 _ _ |a 570
100 1 _ |a Apetz, Nadine
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Effects of subthalamic deep brain stimulation on striatal metabolic connectivity in a rat hemiparkinsonian model
260 _ _ |a Cambridge
|c 2019
|b Company of Biologists Limited
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1561710567_3576
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deep brain stimulation (DBS) in the subthalamic nucleus (STN) has been successfully used for the treatment of advanced Parkinson’s disease, although the underlying mechanisms are complex and not well understood. There are conflicting results about the effects of STN-DBS on neuronal activity of the striatum, and its impact on functional striatal connectivity is entirely unknown. We therefore investigated how STN-DBS changes cerebral metabolic activity in general and striatal connectivity in particular. We used ipsilesional STN stimulation in a hemiparkinsonian rat model in combination with [18F]FDOPA-PET, [18F]FDG-PET and metabolic connectivity analysis. STN-DBS reversed ipsilesional hypometabolism and contralesional hypermetabolism in hemiparkinsonian rats by increasing metabolic activity in the ipsilesional ventrolateral striatum and by decreasing it in the contralesional hippocampus and brainstem. Other STN-DBS effects were subject to the magnitude of dopaminergic lesion severity measured with [18F]FDOPA-PET, e.g. activation of the infralimbic cortex was negatively correlated to lesion severity. Connectivity analysis revealed that, in healthy control animals, left and right striatum formed a bilateral functional unit connected by shared cortical afferents, which was less pronounced in hemiparkinsonian rats. The healthy striatum was metabolically connected to the ipsilesional substantia nigra in hemiparkinsonian rats only (OFF condition). STN-DBS (ON condition) established a new functional striatal network, in which interhemispheric striatal connectivity was strengthened, and both the dopamine-depleted and the healthy striatum were functionally connected to the healthy substantia nigra. We conclude that both unilateral dopamine depletion and STN-DBS affect the whole brain and alter complex interhemispheric networks.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kordys, Elena
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Simon, Mascha
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mang, Britta
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aswendt, Markus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Wiedermann, Dirk
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 6
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 7
|u fzj
700 1 _ |a Timmermann, Lars
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Endepols, Heike
|0 0000-0002-6166-4818
|b 9
|e Corresponding author
773 _ _ |a 10.1242/dmm.039065
|g Vol. 12, no. 5, p. dmm039065 -
|0 PERI:(DE-600)2451104-3
|n 5
|p dmm039065 -
|t Disease models & mechanisms
|v 12
|y 2019
|x 1754-8411
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863492/files/Effects-of-subthalamic-deep-brain-stimulation-on-striatal-metabolic-connectivity-in-a-rat-hemiparkinsonian-model2019Disease-models--mechanismsOpen-Access.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863492/files/Effects-of-subthalamic-deep-brain-stimulation-on-striatal-metabolic-connectivity-in-a-rat-hemiparkinsonian-model2019Disease-models--mechanismsOpen-Access.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863492
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)177611
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIS MODEL MECH : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21