000863548 001__ 863548
000863548 005__ 20240708133006.0
000863548 0247_ $$2doi$$a10.1016/j.ijhydene.2019.08.032
000863548 0247_ $$2ISSN$$a0360-3199
000863548 0247_ $$2ISSN$$a1879-3487
000863548 0247_ $$2WOS$$aWOS:000490030000012
000863548 037__ $$aFZJ-2019-03587
000863548 082__ $$a620
000863548 1001_ $$0P:(DE-Juel1)171337$$aCaglayan, Dilara Gülcin$$b0$$eCorresponding author$$ufzj
000863548 245__ $$aImpact of Different Weather Years on the Design of Hydrogen Supply Pathways for Transport Needs
000863548 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000863548 3367_ $$2DRIVER$$aarticle
000863548 3367_ $$2DataCite$$aOutput Types/Journal article
000863548 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604405348_32573
000863548 3367_ $$2BibTeX$$aARTICLE
000863548 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863548 3367_ $$00$$2EndNote$$aJournal Article
000863548 520__ $$aRenewable energy sources (RES) will play a crucial role in future sustainable energy systems. In scenarios analyzing future energy system designs, a detailed spatial and temporal representation of renewable-based electricity generation is essential. For this, sufficiently representative weather data are required. Most analyses performed in this context use the historical data of either one specific reference year or an aggregation of multiple years. In contrast, this study analyzes the impact of different weather years based on historical weather data from 1980 through 2016 in accordance with the design of an exemplary future energy system. This exemplary energy system consists of on- and offshore wind energy for power-to-hydrogen via electrolysis, including hydrogen pipeline transport for most southwestern European countries. The assumed hydrogen demand for transportation needs represents a hypothetical future market penetration for fuel cell-electric vehicles of 75%. An optimization framework is used in order to evaluate the resulting system design with the objective function of minimizing the total annual cost (TAC) of the system. For each historical weather year, the applied optimization model determines the required capacities and operation of wind power plants, electrolyzers, storage technologies and hydrogen pipelines to meet the assumed future hydrogen demand in a highly spatially- and temporally-detailed manner, as well as the TAC of the system. Following that, the results of every individual year are compared in terms of installed capacities, overall electricity generation and connection to the transmission network, as well as the cost of these components within each region. The results reveal how sensitive the final design of the exemplary system is to the choice of the weather year. For example, the TAC of the system changes by up to 20% across two consecutive weather years. Furthermore, significant variation in the optimization results regarding installed capacities per region with respect to the choice of weather years can be observed.
000863548 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000863548 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000863548 588__ $$aDataset connected to CrossRef
000863548 7001_ $$0P:(DE-Juel1)145221$$aHeinrichs, Heidi$$b1$$ufzj
000863548 7001_ $$0P:(DE-Juel1)130470$$aLinssen, Jochen$$b2$$ufzj
000863548 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b3$$ufzj
000863548 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000863548 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.08.032$$gVol. 44, no. 47, p. 25442 - 25456$$n47$$p25442 - 25456$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000863548 909CO $$ooai:juser.fz-juelich.de:863548$$pVDB
000863548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171337$$aForschungszentrum Jülich$$b0$$kFZJ
000863548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145221$$aForschungszentrum Jülich$$b1$$kFZJ
000863548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130470$$aForschungszentrum Jülich$$b2$$kFZJ
000863548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b3$$kFZJ
000863548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000863548 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000863548 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000863548 9141_ $$y2019
000863548 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000863548 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863548 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863548 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863548 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863548 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863548 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863548 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863548 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863548 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863548 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863548 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863548 920__ $$lyes
000863548 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000863548 980__ $$ajournal
000863548 980__ $$aVDB
000863548 980__ $$aI:(DE-Juel1)IEK-3-20101013
000863548 980__ $$aUNRESTRICTED
000863548 981__ $$aI:(DE-Juel1)ICE-2-20101013