000863562 001__ 863562
000863562 005__ 20240711085642.0
000863562 0247_ $$2doi$$a10.1557/jmr.2019.169
000863562 0247_ $$2ISSN$$a0884-1616
000863562 0247_ $$2ISSN$$a0884-2914
000863562 0247_ $$2ISSN$$a2044-5326
000863562 0247_ $$2WOS$$aWOS:000482958400008
000863562 037__ $$aFZJ-2019-03601
000863562 082__ $$a670
000863562 1001_ $$0P:(DE-HGF)0$$aGiese, Sven$$b0$$eCorresponding author
000863562 245__ $$aMicrotensile creep testing of freestanding MCrAlY bond coats
000863562 260__ $$aCambridge [u.a.]$$bCambridge Univ. Press$$c2019
000863562 3367_ $$2DRIVER$$aarticle
000863562 3367_ $$2DataCite$$aOutput Types/Journal article
000863562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1565960619_21825
000863562 3367_ $$2BibTeX$$aARTICLE
000863562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863562 3367_ $$00$$2EndNote$$aJournal Article
000863562 520__ $$aBond coats are essential in gas turbine technology for oxidation protection. Freestanding MCrAlY (M = Ni, Co) bond coats were investigated with respect to their creep strength at elevated temperatures. Three types of MCrAlY, a Ni-based bond coat Amdry 386, a Co-based bond coat Amdry 9954 and Amdry 9954 + 2 wt% Al2O3 (ODS = oxide dispersion strengthened) produced by low pressure plasma spraying, were analyzed. The two phase microstructure of the bond coats consists of a fcc γ-Ni solid solution and a B2 β-NiAl phase. Constant load experiments were performed in a thermomechanical analyzer at temperatures between 900 and 950 °C. Microtensile test specimens with a diameter of 450 µm were produced by a high-precision grinding and polishing process. Creep rupture was mainly due to void nucleation along the β–γ interfaces and grain boundaries. The time to failure is larger in Ni-based Amdry 386 compared to that in Co-based Amdry 9954 due to a higher fraction of the high-strength β-NiAl phase at test temperatures. The addition of ODS-particles in the Co-based bond coat Amdry 9954 resulted in a better creep resistance but lower ductility in comparison to ODS-particle-free Amdry 9954.
000863562 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000863562 588__ $$aDataset connected to CrossRef
000863562 7001_ $$0P:(DE-HGF)0$$aNeumeier, Steffen$$b1
000863562 7001_ $$0P:(DE-HGF)0$$aAmberger-Matschkal, Doris$$b2
000863562 7001_ $$0P:(DE-Juel1)159410$$aBergholz, Jan$$b3
000863562 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b4$$ufzj
000863562 7001_ $$0P:(DE-HGF)0$$aGöken, Mathias$$b5
000863562 773__ $$0PERI:(DE-600)2015297-8$$a10.1557/jmr.2019.169$$gp. 1 - 10$$n15$$p2643-2652$$tJournal of materials research$$v34$$x2044-5326$$y2019
000863562 8564_ $$uhttps://juser.fz-juelich.de/record/863562/files/microtensile_creep_testing_of_freestanding_mcraly_bond_coats-2.pdf$$yRestricted
000863562 8564_ $$uhttps://juser.fz-juelich.de/record/863562/files/microtensile_creep_testing_of_freestanding_mcraly_bond_coats-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863562 909CO $$ooai:juser.fz-juelich.de:863562$$pVDB
000863562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b4$$kFZJ
000863562 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000863562 9141_ $$y2019
000863562 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000863562 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES : 2017
000863562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863562 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863562 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863562 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863562 920__ $$lyes
000863562 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863562 980__ $$ajournal
000863562 980__ $$aVDB
000863562 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863562 980__ $$aUNRESTRICTED
000863562 981__ $$aI:(DE-Juel1)IMD-2-20101013