| 001 | 863562 | ||
| 005 | 20240711085642.0 | ||
| 024 | 7 | _ | |a 10.1557/jmr.2019.169 |2 doi |
| 024 | 7 | _ | |a 0884-1616 |2 ISSN |
| 024 | 7 | _ | |a 0884-2914 |2 ISSN |
| 024 | 7 | _ | |a 2044-5326 |2 ISSN |
| 024 | 7 | _ | |a WOS:000482958400008 |2 WOS |
| 037 | _ | _ | |a FZJ-2019-03601 |
| 082 | _ | _ | |a 670 |
| 100 | 1 | _ | |a Giese, Sven |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Microtensile creep testing of freestanding MCrAlY bond coats |
| 260 | _ | _ | |a Cambridge [u.a.] |c 2019 |b Cambridge Univ. Press |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1565960619_21825 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Bond coats are essential in gas turbine technology for oxidation protection. Freestanding MCrAlY (M = Ni, Co) bond coats were investigated with respect to their creep strength at elevated temperatures. Three types of MCrAlY, a Ni-based bond coat Amdry 386, a Co-based bond coat Amdry 9954 and Amdry 9954 + 2 wt% Al2O3 (ODS = oxide dispersion strengthened) produced by low pressure plasma spraying, were analyzed. The two phase microstructure of the bond coats consists of a fcc γ-Ni solid solution and a B2 β-NiAl phase. Constant load experiments were performed in a thermomechanical analyzer at temperatures between 900 and 950 °C. Microtensile test specimens with a diameter of 450 µm were produced by a high-precision grinding and polishing process. Creep rupture was mainly due to void nucleation along the β–γ interfaces and grain boundaries. The time to failure is larger in Ni-based Amdry 386 compared to that in Co-based Amdry 9954 due to a higher fraction of the high-strength β-NiAl phase at test temperatures. The addition of ODS-particles in the Co-based bond coat Amdry 9954 resulted in a better creep resistance but lower ductility in comparison to ODS-particle-free Amdry 9954. |
| 536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Neumeier, Steffen |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Amberger-Matschkal, Doris |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Bergholz, Jan |0 P:(DE-Juel1)159410 |b 3 |
| 700 | 1 | _ | |a Vaßen, Robert |0 P:(DE-Juel1)129670 |b 4 |u fzj |
| 700 | 1 | _ | |a Göken, Mathias |0 P:(DE-HGF)0 |b 5 |
| 773 | _ | _ | |a 10.1557/jmr.2019.169 |g p. 1 - 10 |0 PERI:(DE-600)2015297-8 |n 15 |p 2643-2652 |t Journal of materials research |v 34 |y 2019 |x 2044-5326 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/863562/files/microtensile_creep_testing_of_freestanding_mcraly_bond_coats-2.pdf |y Restricted |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/863562/files/microtensile_creep_testing_of_freestanding_mcraly_bond_coats-2.pdf?subformat=pdfa |x pdfa |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:863562 |p VDB |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)129670 |
| 913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2019 |
| 915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MATER RES : 2017 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|