000863564 001__ 863564
000863564 005__ 20241127124645.0
000863564 0247_ $$2doi$$a10.1016/j.ijhydene.2019.08.244
000863564 0247_ $$2ISSN$$a0360-3199
000863564 0247_ $$2ISSN$$a1879-3487
000863564 0247_ $$2WOS$$aWOS:000493221300011
000863564 037__ $$aFZJ-2019-03603
000863564 082__ $$a620
000863564 1001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b0$$eCorresponding author
000863564 245__ $$aAn Autothermal Reforming System for Diesel and Jet Fuel with Quick Start-Up Capability
000863564 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000863564 3367_ $$2DRIVER$$aarticle
000863564 3367_ $$2DataCite$$aOutput Types/Journal article
000863564 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1571753585_1442
000863564 3367_ $$2BibTeX$$aARTICLE
000863564 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863564 3367_ $$00$$2EndNote$$aJournal Article
000863564 520__ $$aA quick, low energy consuming and reliable start-up is essential for fuel cell systems utilizing diesel and jet fuel. A compact fuel processor for coupling with a high-temperature polymer electrolyte fuel cell is developed with electrically-heated reactors in the 28 kWth power class. Based on this set-up, start-up strategies are developed and validated. With the basic strategy, 14 min are required in the best case to commence reforming and achieve self-sustaining operation with desired CO concentration at full load using NExBTL diesel and, respectively, 16 min using Jet A-1. However, using premium diesel, the basic strategy leads to a strong increase in the concentrations of ethane and benzene. An advanced strategy enables 16 min start time with premium diesel suppressing these undesired side products. This result is within the 30 min start-up time target for auxiliary power units for 2020 and offers a reliable option for real world applications.
000863564 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000863564 588__ $$aDataset connected to CrossRef
000863564 7001_ $$0P:(DE-Juel1)129906$$aPrawitz, Matthias$$b1
000863564 7001_ $$0P:(DE-Juel1)129935$$aTschauder, Andreas$$b2
000863564 7001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b3
000863564 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b4
000863564 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b5
000863564 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.08.244$$gVol. 44, no. 51, p. 27749 - 27764$$n51$$p27749 - 27764$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000863564 909CO $$ooai:juser.fz-juelich.de:863564$$pVDB
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b0$$kFZJ
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129906$$aForschungszentrum Jülich$$b1$$kFZJ
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b2$$kFZJ
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b3$$kFZJ
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b4$$kFZJ
000863564 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000863564 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000863564 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000863564 9141_ $$y2019
000863564 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000863564 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863564 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863564 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863564 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863564 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863564 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863564 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863564 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863564 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863564 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863564 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863564 920__ $$lyes
000863564 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000863564 980__ $$ajournal
000863564 980__ $$aVDB
000863564 980__ $$aI:(DE-Juel1)IEK-3-20101013
000863564 980__ $$aUNRESTRICTED
000863564 981__ $$aI:(DE-Juel1)ICE-2-20101013