000863565 001__ 863565
000863565 005__ 20240711101525.0
000863565 0247_ $$2doi$$a10.1016/j.enbuild.2019.109667
000863565 0247_ $$2ISSN$$a0378-7788
000863565 0247_ $$2ISSN$$a1872-6178
000863565 0247_ $$2Handle$$a2128/23838
000863565 0247_ $$2altmetric$$aaltmetric:73713304
000863565 0247_ $$2WOS$$aWOS:000509819200027
000863565 037__ $$aFZJ-2019-03604
000863565 082__ $$a690
000863565 1001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b0$$eCorresponding author$$ufzj
000863565 245__ $$aBottom-up energy supply optimization of a national building stock
000863565 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000863565 3367_ $$2DRIVER$$aarticle
000863565 3367_ $$2DataCite$$aOutput Types/Journal article
000863565 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604405401_754
000863565 3367_ $$2BibTeX$$aARTICLE
000863565 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863565 3367_ $$00$$2EndNote$$aJournal Article
000863565 520__ $$aThe installation and operation distributed energy resources (DER) and the electrification of the heat supply significantly changes the interaction of the residential building stock with the grid infrastructure. Evaluating the mass deployment of DER at the national level would require analyzing millions of individual buildings, entailing significant computational burden.To overcome this, this work proposes a novel bottom-up model that consists of an aggregation algorithm to create a spatially distributed set of typical residential buildings from census data. Each typical building is then optimized with a Mixed-Integer Linear Program to derive its cost optimal technology adoption and operation, determining its changing grid load in future scenarios.The model is validated for Germany, with 200 typical buildings considered to sufficiently represent the diversity of the residential building stock. In a future scenario for 2050, photovoltaic and heat pumps are predicted to be the most economically and ecologically robust supply solutions for the different building types. Nevertheless, their electricity generation and demand temporally do not match, resulting in a doubling of the peak electricity grid load in the rural areas during the winter. The urban areas can compensate this with efficient co-generation units, which are not cost-efficient in the rural areas.
000863565 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000863565 536__ $$0G:(DE-HGF)ES2050$$aES2050 - Energie Sytem 2050 (ES2050)$$cES2050$$x1
000863565 588__ $$aDataset connected to CrossRef
000863565 7001_ $$0P:(DE-Juel1)130471$$aMarkewitz, Peter$$b1$$ufzj
000863565 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b2$$ufzj
000863565 7001_ $$0P:(DE-HGF)0$$aCardoso, Concalo$$b3
000863565 7001_ $$0P:(DE-Juel1)145405$$aStenzel, Peter$$b4$$ufzj
000863565 7001_ $$0P:(DE-HGF)0$$aHeleno, Miguel$$b5
000863565 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
000863565 773__ $$0PERI:(DE-600)1502295-x$$a10.1016/j.enbuild.2019.109667$$gVol. 209, p. 109667 -$$p109667 -$$tEnergy and buildings$$v209$$x0378-7788$$y2020
000863565 8564_ $$uhttps://juser.fz-juelich.de/record/863565/files/Kotzur_Leander.pdf$$yOpenAccess
000863565 8564_ $$uhttps://juser.fz-juelich.de/record/863565/files/Kotzur_Leander.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863565 909CO $$ooai:juser.fz-juelich.de:863565$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b0$$kFZJ
000863565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130471$$aForschungszentrum Jülich$$b1$$kFZJ
000863565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b2$$kFZJ
000863565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145405$$aForschungszentrum Jülich$$b4$$kFZJ
000863565 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000863565 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000863565 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000863565 9141_ $$y2020
000863565 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863565 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863565 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863565 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG BUILDINGS : 2017
000863565 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863565 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863565 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863565 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863565 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863565 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863565 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863565 920__ $$lyes
000863565 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000863565 9801_ $$aFullTexts
000863565 980__ $$ajournal
000863565 980__ $$aVDB
000863565 980__ $$aI:(DE-Juel1)IEK-3-20101013
000863565 980__ $$aUNRESTRICTED
000863565 981__ $$aI:(DE-Juel1)ICE-2-20101013