000863620 001__ 863620
000863620 005__ 20240708132749.0
000863620 037__ $$aFZJ-2019-03632
000863620 041__ $$aEnglish
000863620 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author$$ufzj
000863620 1112_ $$aThe 22nd International Conference on Solid State Ionics 22nd International Conference on Solid State Ionics$$cPyeongChang$$d2019-06-16 - 2019-06-21$$wKorea
000863620 245__ $$aLa0.97Ni0.5Co0.5O3-δ as air electrode material for solid oxide cells
000863620 260__ $$c2019
000863620 3367_ $$033$$2EndNote$$aConference Paper
000863620 3367_ $$2DataCite$$aOther
000863620 3367_ $$2BibTeX$$aINPROCEEDINGS
000863620 3367_ $$2DRIVER$$aconferenceObject
000863620 3367_ $$2ORCID$$aLECTURE_SPEECH
000863620 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1564128450_11893$$xAfter Call
000863620 520__ $$aBased on former research on perovskites in the quasi-ternary system LaFeO3–LaCoO3–LaNiO3[1], LaNi0.5Co0.5O3 (LNC) has been chosen as the most promising air electrode material for solid oxide cells (SOCs) in this system. In the present study, A-site deficiency of LNC is discussed and La0.97Ni0.5Co0.5O3 (LNC97) is selected as the further optimized composition, which has an electronic conductivity of over 1000 S cm-1 at 800oC [2] . Compatibility of LNC97 with 8 mol% Y2O3 stabilized ZrO2 (8YSZ) is analyzed and compared with that of La0.58Sr0.4Co0.8Fe0.2O3-δ (LSCF) and 8YSZ. According to the requirements of the air electrode materials with qualified performance, i.e. 1) high electronic conductivity, 2) high ionic conductivity, and 3) high catalytic activity for the oxygen reduction reaction, LNC97 based electrodes are modified, characterized and optimized by symmetric cell tests. Degradation of the symmetric cells after 1000 h of operation is discussed. Mechanisms for explaining the electrode-processes of LNC97-based electrodes are raised. Full cells based on optimized LNC97 material were tested under both fuel cell mode and electrolyzer mode. The achieved performances are even better than the-state-of-the-art LSCF based SOCs, indicating a prospective future for the developed material and the air-electrode.[1] F. Tietz, I. ArulRaj, Q. Ma, S.Baumann, A.Mahmoud, R.P.Hermann, J. Solid State Chem. 237 (2016) 183–191.[2] Q. Ma, M. Balaguer, D. Pérez-Coll, L. G. J. de Haart, J. M. Serra, G. C. Mather, F. Tietz, N. H. Menzler, O. Guillon. ACS Appl. Energy Mater. 1 (2018) 2784−2792.
000863620 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000863620 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000863620 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1$$ufzj
000863620 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b2$$ufzj
000863620 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000863620 909CO $$ooai:juser.fz-juelich.de:863620$$pVDB
000863620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ
000863620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b1$$kFZJ
000863620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b2$$kFZJ
000863620 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000863620 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000863620 9141_ $$y2019
000863620 920__ $$lyes
000863620 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863620 980__ $$aconf
000863620 980__ $$aVDB
000863620 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863620 980__ $$aUNRESTRICTED
000863620 981__ $$aI:(DE-Juel1)IMD-2-20101013