000863621 001__ 863621
000863621 005__ 20240708132749.0
000863621 037__ $$aFZJ-2019-03633
000863621 041__ $$aEnglish
000863621 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author$$ufzj
000863621 1112_ $$aThe 22nd International Conference on Solid State Ionics 22nd International Conference on Solid State Ionics$$cPyeongChang$$d2019-06-16 - 2019-06-21$$wKorea
000863621 245__ $$aThe re-discovery of NASICON materials
000863621 260__ $$c2019
000863621 3367_ $$033$$2EndNote$$aConference Paper
000863621 3367_ $$2DataCite$$aOther
000863621 3367_ $$2BibTeX$$aINPROCEEDINGS
000863621 3367_ $$2DRIVER$$aconferenceObject
000863621 3367_ $$2ORCID$$aLECTURE_SPEECH
000863621 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1564126640_11738$$xAfter Call
000863621 520__ $$aDespite of huge efforts, the lack of suitable candidate for electrolytes still impedes the development of all-solid-state Na batteries. Na3+xZr2Si2+xP1-xO12 (-0.2 ≤ x ≤ 0.2) are the very first composition series of NASICONs discovered 40 years ago and were reported having a total Na-ion conductivity of ~10-4 S cm-1 at room temperature. In the present study, this composition series is reconsidered and the focusing range of stoichiometry has been varied from x = 0 to x = 0.6. A solution-assisted solid-state reaction method is applied for powder preparation. Surprisingly, a total conductivity of over 5 × 10-3 S cm-1 is achieved for Na3.4Zr2Si2.4P0.6O12 (NZSP) at 25 °C, which is the best value of all reported polycrystalline Na-ion conductors. A bulk conductivity of about 1.5 × 10-2 S cm-1 is also revealed by high frequency impedance spectroscopy up to 3 GHz for NZSP at 25 °C. The parameters influencing the total conductivity are discussed in detail. Benefitted from the superior total conductivity of NZSP, symmetric cells of Na/NZSP/Na and full-ceramic cells of Na3V2P3O12 (NVP)/NZSP/NVP have been fabricated and tested at room temperature with good cycling performance.
000863621 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000863621 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000863621 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b2$$ufzj
000863621 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj
000863621 909CO $$ooai:juser.fz-juelich.de:863621$$pVDB
000863621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ
000863621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ
000863621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b2$$kFZJ
000863621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ
000863621 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000863621 9141_ $$y2019
000863621 920__ $$lyes
000863621 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000863621 980__ $$aconf
000863621 980__ $$aVDB
000863621 980__ $$aI:(DE-Juel1)IEK-1-20101013
000863621 980__ $$aUNRESTRICTED
000863621 981__ $$aI:(DE-Juel1)IMD-2-20101013