000863622 001__ 863622 000863622 005__ 20240708132801.0 000863622 037__ $$aFZJ-2019-03634 000863622 1001_ $$0P:(DE-Juel1)129628$$aMa, Qianli$$b0$$eCorresponding author$$ufzj 000863622 1112_ $$aThe 11th International Conference on High-Performance Ceramics$$cKunming$$d2019-05-25 - 2019-05-29$$wChina 000863622 245__ $$aThe re-discovery of NASICON materials 000863622 260__ $$c2019 000863622 3367_ $$033$$2EndNote$$aConference Paper 000863622 3367_ $$2DataCite$$aOther 000863622 3367_ $$2BibTeX$$aINPROCEEDINGS 000863622 3367_ $$2DRIVER$$aconferenceObject 000863622 3367_ $$2ORCID$$aLECTURE_SPEECH 000863622 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1564127480_11738$$xInvited 000863622 520__ $$aDespite of huge efforts, the lack of suitable candidate for electrolytes still impedes the development of all-solid-state Na batteries. Na3+xZr2Si2+xP1-xO12 (-0.2 ≤ x ≤ 0.2) are the very first composition series of NASICONs discovered 40 years ago and were reported having a total Na-ion conductivity of ~10-4 S cm-1 at room temperature. In the present study, this composition series is reconsidered and the focusing range of stoichiometry has been varied from x = 0 to x = 0.6. A solution-assisted solid-state reaction method is applied for powder preparation. Surprisingly, a total conductivity of over 5 × 10-3 S cm-1 is achieved for Na3.4Zr2Si2.4P0.6O12 at 25 °C, which is the best value of all reported polycrystalline Na-ion conductors. A bulk conductivity of about 1.5 × 10-2 S cm-1 is also revealed by high frequency impedance spectroscopy up to 3 GHz for Na3.4Zr2Si2.4P0.6O12 at 25 °C. The parameters influencing the total conductivity are discussed in detail. Benefitted from the superior total conductivity of Na3.4Zr2Si2.4P0.6O12, a full-ceramic cell has been fabricated and tested at 28 °C with good cycling performance. To our knowledge, this is the first full ceramic Na-ion battery which has been operated at room temperature. 000863622 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000863622 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj 000863622 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b2$$ufzj 000863622 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b3$$ufzj 000863622 909CO $$ooai:juser.fz-juelich.de:863622$$pVDB 000863622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129628$$aForschungszentrum Jülich$$b0$$kFZJ 000863622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich$$b1$$kFZJ 000863622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b2$$kFZJ 000863622 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b3$$kFZJ 000863622 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000863622 9141_ $$y2019 000863622 920__ $$lyes 000863622 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000863622 980__ $$aconf 000863622 980__ $$aVDB 000863622 980__ $$aI:(DE-Juel1)IEK-1-20101013 000863622 980__ $$aUNRESTRICTED 000863622 981__ $$aI:(DE-Juel1)IMD-2-20101013