001     863625
005     20240712084623.0
024 7 _ |a 10.1016/j.nme.2018.12.019
|2 doi
024 7 _ |a 2128/22450
|2 Handle
024 7 _ |a WOS:000460107500027
|2 WOS
037 _ _ |a FZJ-2019-03636
082 _ _ |a 624
100 1 _ |a Oelmann, Jannis
|0 P:(DE-Juel1)169485
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Depth resolved analysis of hydrogen in W7-X graphite components using laser-induced ablation-quadrupole mass spectrometry (LIA-QMS)
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562831253_29363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A deep understanding of the plasma-wall interaction processes in fusion devices like Wendelstein 7-X is necessary for an efficient plasma operation and a long lifetime of the plasma-facing components.In this work we present an approach employing residual gas analysis after picosecond laser-induced ablation (ps LIA-QMS) of graphite limiter tiles, exposed in the first plasma operational phase of Wendelstein 7-X, for depth-resolved and quantitative hydrogen content analysis. A series of poloidal and toroidal locations are analyzed at three of the five limiters, showing up to 2.3 × 1022 hydrogen atoms/m2 in net-deposition areas after a total plasma exposure of about 311 s in mixed hydrogen and helium operation. Shallow implantation of hydrogen is observed in erosion zones, where a low fuel content is present due to the high surface temperature during plasma operation. The hydrogen content spans between (1.1 and 3.7) × 1021 hydrogen atoms/m2 in the net-erosion areas. Moreover, oxygen has been analyzed and its appearance in both the implantation and deposition zone was verified. Results are compared to thermal desorption spectrometry and to simultaneously performed laser-induced breakdown spectroscopy (LIBS) measurements.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Li, Cong
|0 P:(DE-Juel1)171238
|b 1
|u fzj
700 1 _ |a Brezinsek, Sebastijan
|0 P:(DE-Juel1)129976
|b 2
700 1 _ |a Rasinski, Marcin
|0 P:(DE-Juel1)162160
|b 3
|u fzj
700 1 _ |a Dhard, Chandra Prakash
|0 P:(DE-HGF)0
|b 4
700 1 _ |a König, Ralf
|0 P:(DE-Juel1)130373
|b 5
|u fzj
700 1 _ |a Winters, Victoria
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Linsmeier, Christian
|0 P:(DE-Juel1)157640
|b 7
773 _ _ |a 10.1016/j.nme.2018.12.019
|g Vol. 18, p. 153 - 158
|0 PERI:(DE-600)2808888-8
|p 153 - 158
|t Nuclear materials and energy
|v 18
|y 2019
|x 2352-1791
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863625/files/1-s2.0-S2352179118301893-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863625/files/1-s2.0-S2352179118301893-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863625
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169485
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162160
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)157640
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21