Home > Publications database > Beyond consensus: Embracing heterogeneity in curated neuroimaging meta-analysis > print |
001 | 863645 | ||
005 | 20210130002242.0 | ||
024 | 7 | _ | |a 10.1016/j.neuroimage.2019.06.037 |2 doi |
024 | 7 | _ | |a 1053-8119 |2 ISSN |
024 | 7 | _ | |a 1095-9572 |2 ISSN |
024 | 7 | _ | |a altmetric:62623084 |2 altmetric |
024 | 7 | _ | |a pmid:31229658 |2 pmid |
024 | 7 | _ | |a WOS:000481579300012 |2 WOS |
024 | 7 | _ | |a 2128/23402 |2 Handle |
037 | _ | _ | |a FZJ-2019-03656 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ngo, Gia H. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Beyond consensus: Embracing heterogeneity in curated neuroimaging meta-analysis |
260 | _ | _ | |a Orlando, Fla. |c 2019 |b Academic Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1562835360_29361 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions consistently activated across a selected set of experiments, such as within a functional domain or mental disorder. ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the author-topic modeling of experiments involving self-generated thought (N = 179) revealed cognitive components fractionating the default network. In the second application, the author-topic model revealed that the left inferior frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the author-topic model estimates compared favorably with spatial independent component analysis in both simulation and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. Code for this study is publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic). |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Eickhoff, Simon B. |0 P:(DE-Juel1)131678 |b 1 |u fzj |
700 | 1 | _ | |a Nguyen, Minh |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Sevinc, Gunes |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Fox, Peter T. |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Spreng, R. Nathan |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Yeo, B. T. Thomas |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.neuroimage.2019.06.037 |g Vol. 200, p. 142 - 158 |0 PERI:(DE-600)1471418-8 |p 142 - 158 |t NeuroImage |v 200 |y 2019 |x 1053-8119 |
856 | 4 | _ | |y Published on 2019-06-20. Available in OpenAccess from 2020-06-20. |u https://juser.fz-juelich.de/record/863645/files/Ngo19.pdf |
856 | 4 | _ | |y Published on 2019-06-20. Available in OpenAccess from 2020-06-20. |x pdfa |u https://juser.fz-juelich.de/record/863645/files/Ngo19.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:863645 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131678 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NEUROIMAGE : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NEUROIMAGE : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-7-20090406 |k INM-7 |l Gehirn & Verhalten |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-7-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|