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Abstract 

Coordinate-based meta-analysis can provide important insights into mind-brain 

relationships. A popular approach for curated small-scale meta-analysis is activation likelihood 

estimation (ALE), which identifies brain regions consistently activated across a selected set of 

experiments, such as within a functional domain or mental disorder. ALE can also be utilized 

in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-

activated with a seed region. Therefore, ALE aims to find consensus across experiments, 

treating heterogeneity across experiments as noise. However, heterogeneity within an ALE 

analysis of a functional domain might indicate the presence of functional sub-domains. 

Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed 

region in multiple co-activation patterns that are dependent on task contexts. Here, we 

demonstrate the use of the author-topic model to automatically determine if heterogeneities 

within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. 

In the first application, the author-topic modeling of experiments involving self-generated 

thought (N = 179) revealed cognitive components fractionating the default network. In the 

second application, the author-topic model revealed that the left inferior frontal junction (IFJ) 

participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the 

author-topic model estimates compared favorably with spatial independent component analysis 

in both simulation and real data. Overall, the results suggest that the author-topic model is a 

flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from 

functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. 

Code for this study is publicly available 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-

analysis/Ngo2019_AuthorTopic). 
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1 Introduction 

Brain imaging experiments are often underpowered (Carp, 2012; Poline et al., 2012; 

Button et al., 2013). Coordinate-based meta-analysis provides an important framework for 

analyzing underpowered studies across different experimental conditions and analysis piplines 

to reveal reliable trends (Wager et al. 2003; Fox et al. 2014; Poldrack and Yarkoni, 2016). 

Large-scale coordinate-based meta-analyses synthesize thousands of experiments across 

diverse experimental designs to discover broad and general principles of brain organization 

and disorder (Laird et al., 2011; Poldrack et al., 2011; Crossley et al., 2014). By contrast, the 

vast majority of meta-analyses involve smaller number of experiments that are expertly chosen 

(curated) to generate consensus on specific functional domains (e.g., Binder et al. 2009), brain 

regions (e.g., Shackman et al., 2011) or disorders (e.g., Cortese et al., 2012). 

A popular approach for smaller-scale meta-analyses is activation likelihood estimation 

or ALE (Laird et al., 2005; Eickhoff et al. 2009, 2012; Turkeltaub et al. 2012). ALE identifies 

brain regions consistently activated across neuroimaging experiments within a functional 

domain (Costafreda et al., 2008; Spaniol et al., 2009; Beissner et al., 2013) or within a disorder 

(e.g., Fitzgerald et al., 2008; Minzenberg et al., 2009; Di Martino et al., 2009). Thus, ALE 

treats heterogeneities across studies as noise. Consequently, ALE analysis might miss out on 

genuine biological heterogeneity indicative of functional sub-domains or disorder subtypes.  

 

Figure 1. Example of heterogeneity in neuroimaging meta-analysis. The middle panel shows 
activation peaks reported from neuroimaging experiments within a functional domain. Half the 
experiments are red dots; half the experiments are yellow dots. The left panel illustrates a 
possible outcome of activation likelihood estimation (ALE), which converges on regions 
consistently activated across experiments (blue dotted circle). The right panel illustrates a 
possible estimate by the author-topic model (Yeo et al., 2015), which recovers overlapping 
patterns (red and yellow ovals) corresponding to two functional sub-domains. We note that the 
spatial spread of the activation foci was exaggerated to accentuate the overlaps and differences 
between the activation patterns of the two functional sub-domains. 
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For example, Figure 1 (middle panel) illustrates activation foci from experiments 

associated with a hypothetical functional domain. These foci are generated by two latent sub-

domains activating distinct, but overlapping, brain regions. Without prior knowledge of the 

two sub-domains from theory or previous empirical work, ALE will converge on regions 

commonly activated across both sub-domains (Figure 1 left panel). To get around this issue, 

meta-analytic studies can sub-divide experiments into hypothetical functional sub-domains 

before applying ALE. For example, a recent meta-analysis divided working memory 

experiments into verbal versus non-verbal tasks, as well as tasks involving object identity 

versus object locations (Rottschy et al., 2012). However, manually subdividing experiments 

requires prior knowledge of the sub-domains and may reinforce biases towards existing 

concepts. By contrast, in this study, we explored whether a previously published data-driven 

approach (author-topic model; Yeo et al., 2015) can help uncover heterogeneities1 within ALE-

type meta-analyses in a bottom-up, data-driven fashion (Figure 1 right panel).  

 

1.1 Discovering sub-domains of self-generated thought 

A good example in which ALE might miss out on functional sub-domains is the default 

network and self-generated thought (Smallwood, 2013; Andrews-Hanna et al., 2014). Self-

generated thought involves associative and constructive processes that take place within an 

individual, and depends upon an internal representation to reconstruct or imagine a situation, 

understand a stimulus, or generate an answer to a question. The term “self-generated thought” 

serves to contrast with thoughts where the primary referent is based on immediate perceptual 

input. By virtue of being largely stimulus independent or task unrelated, self-generated thought 

has been linked with the functions of the default network (Buckner et al., 2008; Andrews-

Hanna et al., 2014). Previous ALE meta-analyses have implicated the default network in many 

tasks involving self-generated thought, including theory of mind, narrative fiction, 

autobiographical memory and moral cognition (Spreng et al. 2009; Binder et al. 2009; Mar, 

2011; Sevinc and Spreng, 2014).  

                                                      
1 We note that when estimating functional sub-domains, we are not interested in capturing 
idiosyncrasies of individual experiments or even individual tasks. Instead, we are hoping to 
estimate a small number of overlapping, but distinct activation patterns (cognitive processes) 
that are recruited to different extents across tasks. 
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However, many studies have suggested that the default network might be fractionated 

into sub-systems. For example, Andrews-Hanna and colleagues have proposed a dorsomedial 

prefrontal subsystem preferentially specialized for social cognition and narrative processing 

(Andrews-Hanna et al., 2014; Spreng & Andrews-Hanna, 2015) and a medial temporal lobe 

sub-system preferentially specialized for mnemonic constructive processes (Andrews-Hanna 

et al., 2014; Christoff et al., 2016). Both sub-systems might spatially overlap or inter-digitate 

across multiple brain regions (Andrews-Hanna et al., 2014; Braga and Buckner, 2017), which 

would be challenging to ALE without assuming prior knowledge of the sub-systems (Figure 

1). Furthermore, specific default network fractionation details differed across studies (Laird et 

al. 2009; Andrews-Hanna et al., 2010; Mayer et al. 2010; Humphreys et al., 2015; Kernbach et 

al., 2018), so application of the author-topic model might potentially clarify sub-systems 

subserving self-generated thought. 

 

1.2 Discovering multiple co-activation patterns of the left inferior frontal junction (IFJ) 

Another common application of ALE is meta-analytic connectivity modeling 

(MACM), which identifies brain regions that consistently co-activate with a particular seed 

region (Toro et al., 2008; Koski and Paus, 2010; Robinson et al., 2010; Eickhoff et al., 2010). 

The assumption is that the seed region exhibits a single co-activation pattern regardless of the 

actual task activating the seed region (Robinson et al. 2010). However, studies have shown the 

existence of multiple hub regions in the brain (e.g., dorsal anterior insula, dorsal anterior 

cingulate cortex) that are activated across many different tasks and might adapt their 

connectivity pattern depending on task context (Cole et al., 2013; Uddin 2015; Bertolero et al., 

2017). Thus, a seed region might be involved in multiple task-dependent co-activation patterns 

(McIntosh, 2000). 

A good example in which MACM might miss out on multiple co-activation patterns is 

the left inferior frontal junction (IFJ; Muhle-Karbe et al., 2015). The IFJ has been implicated 

in many cognitive processes (Brass et al. 2005; Chikazoe et al. 2009; Asplund et al. 2010) and 

is a key node of the multiple-demand system (Duncan et al., 2010; Fedorenko et al., 2010). IFJ 

might also coordinate information among modules by adapting its connectivity patterns across 

different resting and task states (Cole et al., 2013; Bertolero et al., 2018). Therefore, one might 

expect the IFJ region to exhibit multiple co-activation patterns that are dependent on task 

contexts. Since ALE cannot capture heterogeneity across experiments, MACM might be 

insensitive to such task-dependent co-activation patterns. On the other hand, application of the 

author-topic model to the IFJ region might yield multiple meaningful co-activation patterns. 
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1.3 Author-topic model 

In this work, we propose the use of the author-topic model to automatically make sense 

of heterogeneity within ALE-type meta-analyses. We have previously utilized the author-topic 

model (Figure 2; Yeo et al. 2015; Bertolero et al., 2015) to encode the intuitive notion that a 

behavioral task recruits multiple cognitive components, which are in turn supported by 

overlapping brain regions (Poldrack 2006; Leech et al. 2012; Barrett and Satpute, 2013). While 

our previous work focused on large-scale meta-analysis across many functional domains (Yeo 

et al. 2015; Bertolero et al., 2015), the current study focuses on heterogeneity within a 

functional domain (self-generated thought) or co-activation heterogeneity of a seed region (left 

IFJ). These applications of the author-topic model are made possible by the development of a 

novel inference algorithm for the author-topic model (Ngo et al., 2016) that is sufficiently 

robust for smaller-scale meta-analyses.  

 

Figure 2. Author-topic model for coordinate-based meta-analysis (Yeo et al. 2015). The 
underlying premise of the model is that behavioral tasks recruit multiple cognitive components, 
which are in turn supported by overlapping brain regions. The model parameters are the 
probability that a task would recruit a cognitive component (Pr(component | task)) and the 
probability that a component would activate a brain voxel (Pr(voxel | component)). The author-
topic model can be directly applied to estimate cognitive components (sub-systems) of self-
generated thought.  
 
 

Author-topic model for coordinate-based meta-analysis 
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Our choice of self-generated thought is motivated by previous work suggesting the 

possibility of fractionating self-generated thought into functional sub-domains (Section 1.1). 

Similarly, our choice of left IFJ is motivated by previous work suggesting that IFJ might 

adaptively modify its connectivity patterns across task contexts (Section 1.2). There are of 

course other functional domains (e.g., executive function) that might be fractionated and other 

hub regions (e.g., dorsal anterior insula) that might exhibit task-dependent co-activation 

patterns. Therefore, we have made our code publicly available for researchers to explore the 

heterogeneity of their preferred functional domain, hub region or mental disorder.  
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2 Methods 

2.1 Overview 

In Section 2.2, we reviewed the author-topic model and how it could be applied to 

coordinate-based meta-analysis (Yeo et al. 2015). Section 2.3 discussed simulations and 

comparisons with spatial independent component analysis. Finally, the model was utilized in 

two different applications. In the first application (Section 2.4), we applied the author-topic 

model to discover cognitive components subserving self-generated thought. In the second 

application (Section 2.5), we estimated the co-activation patterns of the left IFJ.  

 

2.2 Author-topic model  

2.2.1 Intuition behind the model 

The author-topic model was originally developed to discover topics from a corpus of 

text documents (Rosen-Zvi et al., 2010). The model represents each text document as an 

unordered collection of words written by a group of authors. Each author is associated with a 

probability distribution over topics, and each topic is associated with a probability distribution 

over a dictionary of words. Given a corpus of text documents, there are algorithms to estimate 

the distribution of topics associated with each author and the distribution of words associated 

with each topic. A topic is in some sense abstract, but is made concrete by its association with 

certain words and its association with certain authors. For example, if the author-topic model 

was applied to neuroimaging research articles, the algorithm might yield a topic associated 

with the author “Stephen Smith” and words like “fMRI”, “resting-state” and “ICA”. One might 

then interpret the topic posthoc as a “resting-state fMRI” research topic.  

In a previous study (Yeo et al., 2015), the author-topic model was applied to 

neuroimaging meta-analysis (Figure 2) by treating task contrasts in the BrainMap database 

(Fox and Lancaster, 2002) as text documents, 83 BrainMap task categories (e.g., n-back) as 

authors, cognitive components as topics, and activation foci as words in the documents. Thus, 

the model encodes the premise that different behavioral tasks recruit multiple cognitive 

components, supported by overlapping brain regions.  

Suppose a study utilizes one or more task categories, resulting in an experimental 

contrast yielding a collection of activation foci. Under the author-topic model, each activation 

focus is assumed to be generated by first randomly selecting a task from the set of tasks utilized 

in the experiment. Given the task, a component is randomly chosen based on the probability of 

a task recruiting a component (Pr(component | task)). Given the component, the location of the 

activation focus is then randomly chosen based on the probability that the component would 
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activate a voxel (Pr(voxel | component)). The entire collections of Pr(component | task) and 

Pr(voxel | component) are denoted as matrices 𝜃 and 𝛽, respectively. For example, the 2nd row 

and 3rd column of 𝜃 corresponds to Pr(3rd component | 2nd task) and the 4th row and 28th 

column of 𝛽 corresponds to Pr(28th voxel | 4th component). Therefore, each row of 𝜃 and 𝛽 

sums to 1. The formal mathematical definition of the model is provided in Supplemental 

Method S1. 

A key property of the author-topic model is that the ordering of words within a 

document is exchangeable. When applied to meta-analysis, the corresponding assumption is 

that the ordering of activation foci is arbitrary. Although the ordering of words within a 

document is obviously important, the ordering of activation foci is not. For example, in the 

context of text documents, “dog has a bone” has a different meaning from “bone has a dog”. 

On the other hand, in the context of a fMRI experiment, reporting parietal activation 

coordinates followed by prefrontal activation coordinates is equivalent to reporting prefrontal 

activation coordinates followed by parietal activation coordinates. Therefore, the author-topic 

model is arguably more suitable for meta-analysis than topic discovery from documents. 

 

2.2.2 Estimating the model parameters 

Given a collection of experiments with their associated activation coordinates and task 

categories, as well as the number of cognitive components 𝐾, the probabilities 𝜃 and 𝛽 can be 

estimated using various algorithms (Rosen-Zvi et al. 2010; Yeo et al., 2015; Ngo et al., 2016). 

Here, we chose to utilize the CVB algorithm because the algorithm was more robust to the 

choice of hyperparameters in smaller datasets. Although the CVB algorithm for the author-

topic model was first introduced in a conference article (Ngo et al., 2016), detailed derivations 

have not been published. For completeness, detailed derivations of the author-topic CVB 

algorithm are provided in Supplemental Method S2. Explanations of why the CVB algorithm 

is theoretically better than the EM algorithm and standard variational Bayes inference are found 

in Supplemental Method S3. In this work, Bayesian information criterion (BIC) was used to 

estimate the optimal number of cognitive components (Supplemental Method S4).  Further 

implementation details are found in Supplemental Method S5.  

 

2.2.3 Input to the author-topic model 

Each task activation contrast was associated with a set of activation foci. The spatial 

locations (i.e., coordinates) of the activation foci were reported in or transformed to the 
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MNI152 coordinate system (Lancaster et al., 2007). Using standard meta-analysis procedure 

(Wager et al., 2009; Yarkoni et al. 2011; Yeo et al. 2015), a 2mm-resolution binary activation 

image was created for each experimental contrast, in which a voxel was given a value of 1 if it 

was within a 10mm-radius of any activation focus, and 0 otherwise. Thus, the set activated 

voxels of each experiment in the author-topic model corresponds to the set of voxels with a 

value of 1 in the corresponding 2mm-resolution binary activation image. We note that the exact 

choice of smoothing radius did not significantly affect the results (see Section 3.4). 

 

2.3 Simulations 

2.3.1 Independent component analysis (ICA) 

ICA is a data-driven technique that has been widely applied to fMRI (Calhoun et al. 

2001; Beckmann and Smith, 2004). ICA has also been successfully applied to coordinate-based 

meta-analysis (Smith et al., 2009). However, the author-topic model has a few significant 

advantages over ICA in the case of coordinate-based meta-analysis. First, activation foci are 

binary data in the sense that a voxel is either reported to be activated or not in an experiment. 

However, ICA requires positive and negative values in the input data, which involves 

demeaning the binary values at each voxel (across experiments). In contrast, the author-topic 

model makes direct use of the binary activation data. Second, the author-topic model is able to 

exploit task categorical information (red task layer in Figure 2), which is non-trivial to 

introduce in ICA.  

Most importantly, ICA estimates can be negative, which do not make sense in the case 

of coordinate-based meta-analysis. For example, a task should not be allowed to be negatively 

associated with a component, since task activation and de-activation in a coordinate-based 

meta-analysis are typically handled separately. Similarly, it does not make sense for the 

activation maps associated with each component to be negative. The situation is of course 

reversed in image-based meta-analysis (Salimi-Khorshidi et al., 2009), where there might be 

both activation and de-activation. For image-based meta-analysis, it does make sense to talk 

about components being negatively recruited by a task and ICA makes more theoretical sense 

than the author-topic model. 

 

2.3.2 Simulation details 

Here, we considered simulations to compare the effectiveness of the author-topic model 

and ICA. More specifically, we considered a hypothetical situation in which five tasks from a 

functional domain recruited two cognitive components with different probabilities (Figure 3A). 
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The two components have distinct activation patterns on a 2D “brain” of 256 by 256 pixels. 

More specifically, each component is associated with activations within two Gaussian 

distributions centered at two opposite quadrants of the 2D brain (Figure 3B). Given the 

activation foci of multiple experiments (task contrasts), the goal was to automatically recover 

the two cognitive components using either the author-topic model or ICA.   

 

 
Figure 3. Simulation of heterogeneity in coordinate-based meta-analysis. (A) Bar chart shows 
five tasks from a functional domain recruiting two cognitive components with different 
probabilities. (B) Activation patterns of two components on a 2D “brain” of 256 by 256 pixels. 
Each component is associated with activations (white crosses) within two Gaussian 
distributions centered at two opposite quadrants of the 2D “brain”. For each simulation run, 
the probability of a task recruiting a component and the covariances of each component’s 2D 
Gaussian distributions were randomly generated. The author-topic model and ICA were then 
applied to recover the two components. We note that ICA mixture weights can be negative, 
which does not make sense in the context of coordinate-based meta-analysis. As such, we 
discarded simulation runs if any of the ICA estimates yielded negative weights. 

 

A single simulation run comprised 150 experiments (task contrasts), which is 

comparable to a typical meta-analysis (c.f. self-generated thought in Section 2.4). Each 

experiment (task contrast) was randomly assigned to one of the five tasks, with the contrast 

distributions skewed towards two of the five tasks to simulate the fact that some tasks are more 

popular than others in the literature. Furthermore, each task contrast is randomly chosen to 

have between 1 to 10 activation foci. For each activation focus, a component was randomly 

sampled based on the probability of components given the task assigned to the experiment. For 

the given component, one of the 2-D Gaussian distributions of each component was randomly 

chosen with equal probabilities (Figure 3B). The spatial location of the activation focus was 

then randomly sampled from the Gaussian distribution. The activation focus was smoothed 

with a binary smoothing kernel, such that all pixels within 10 voxels from an activation focus 

were given a value of 1, and 0 otherwise. 
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For a given simulation run, the latent components were estimated using either ICA or 

the author-topic model. We considered three possible ICA setups. The first two setups (ICA1 

and ICA2) utilized CanICA (Varoquaux et al., 2010), an ICA decomposition implementation 

provided with Nilearn (Abraham et al. 2014). CanICA extracts representative patterns of multi-

subject fMRI data by performing ICA on a data subspace common to the group (Varoquaux et 

al., 2010). In the two setups ICA1 and ICA2, each task was treated as a subject. In ICA1, the 

activation maps of all experiments assigned to the same task were summed together, i.e., each 

task was treated as a single subject with a single time point. In ICA2, each task was treated as 

a single subject, but the experiments assigned to the given task were treated as separate time 

points of the subject. The third setup (ICA3) utilized the MELODIC implementation of ICA 

from the FSL package (Beckmann & Smith 2004; Smith et al. 2004).  

To evaluate the estimation quality, Pearson’s correlation coefficient was computed 

between the groundtruth probability distribution of a component activating a vertex (Pr(vertex 

| component)) against the estimates from the author-topic model or ICA. Pearson’s correlation 

coefficient was also computed between the groundtruth distribution of components given a task 

(Pr(component | task)) and estimates from the author-topic model or ICA.  

The simulation was repeated multiple times. For a given simulation run, the covariances 

of each component’s 2D Gaussian distributions were randomly generated (Figure 3B). The 

probability of a task recruiting a component was also randomly generated (Figure 3A). As 

explained previously (Section 2.3.1), ICA’s mixture weights can be negative, which implies 

negative associations between tasks and components. This does not make sense in the case of 

coordinate-based meta-analysis, so we discarded simulation runs if any of the ICA estimates 

yielded negative weights. Overall, we ran roughly 300 simulation runs in order to yield exactly 

100 simulation runs, in which ICA estimates were valid. 

 

2.4 Self-generated thought 

2.4.1 Activation foci of experiments involving self-generated thought 

To explore cognitive components subserving self-generated thought, we considered 

1812 activation foci from 179 experimental contrasts across 167 imaging studies, each 

employing one of seven task categories subjected to prior meta-analysis with GingerALE (Fox 

and Lancaster, 2002; Laird et al., 2009, 2011; Fox et al., 2014; http://brainmap.org/ale). Of the 

167 studies, 48 studies employed “Autobiographical Memory” (N = 19), “Navigation” (N = 

13) or “Task Deactivation” (N = 16) tasks. The 48 studies were employed in a previous meta-

analysis examining the default network (Spreng et al., 2009). There were 79 studies involving 

http://brainmap.org/ale
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“Story-based Theory of Mind” (N = 18), “Nonstory-based Theory of Mind” (N = 42) and 

“Narrative Comprehension” (N = 19) tasks. The 79 studies were utilized in a previous meta-

analysis examining social cognition and story comprehension (Mar, 2011). Finally, there were 

40 studies involving the “Moral Cognition” task that was again utilized in a previous meta-

analysis (Sevinc and Spreng, 2014). The list of all experiments included in the dataset are 

provided in Supplemental Method S7. The criteria for selecting the experiments can be found 

in the original meta-analyses (Spreng et al., 2009; Mar, 2011; Sevinc and Spreng, 2014). All 

foci coordinates were in or transformed to the MNI152 coordinate system (Lancaster et al., 

2007).  

 

2.4.2 Discovering cognitive components of self-generated thought 

The application of the author-topic model to discover cognitive components subserving 

self-generated thought (Figure 2) is conceptually similar to the original application to the 

BrainMap (Yeo et al., 2015). The key difference is that the current application is restricted to 

seven related tasks in order to discover heterogeneity within a single functional domain, while 

the original application sought to find common and distinct cognitive components across 

domains.  

The model parameters are the probability of a task recruiting a component 

(Pr(component | task)) and the probability of a component activating a brain voxel (Pr(voxel | 

component)). The parameters were estimated from the 1812 activation foci from the previous 

section using the CVB algorithm (Supplemental Methods S2 and S5). BIC was used to estimate 

the optimal number of cognitive components (Supplemental Method S4).  

 

2.4.3 Interpreting cognitive components of self-generated thought 

We note that Pr(component | task) can be interpreted as follows. Suppose Pr(component 

C1 | autobiographical memory) is equal to 0.63 and we have an autobiographical memory 

experiment that reported 100 activation foci. Then, on average, 63 foci will fall inside 

component C1.  

The matrix Pr(voxel | component), 𝛽, can be interpreted as 𝐾 brain images in MNI152 

coordinate system (Lancaster et al., 2007), where 𝐾 is the number of cognitive components. 

Volumetric slices highlighting specific subcortical structures were displayed using FreeSurfer 

(Fischl, 2012). The cerebral cortex was visualized by transforming the volumetric images from 

MNI152 space to fs_LR surface space using Connetome Workbench (Van Essen et al., 2013) 

via the FreeSurfer surface space (Buckner et al., 2011; Fischl et al., 2012). For visualization 



 14 

purpose, isolated surface clusters with less than 20 vertices were removed. Pr(component | task) 

was thresholded at 1/K, and Pr(voxel | component) was thresholded at 1e-5, consistent with 

previous work (Yeo et al., 2015). Unthresholded maps of the components are available on 

NeuroVault (Gorgolewski et al., 2015) at https://neurovault.org/collections/4684/. 

 

2.4.4 Goodness of fit 

For each task, we computed the weighted average of the cognitive components 

(Pr(voxel | component)), where the weights corresponded to the probabilities of the task 

recruiting the components (Pr(component | task)). This weighted average spatial map could be 

interpreted as the model estimate of the “ideal” (reconstructed) activation map for a particular 

task. The model fit was good if a task’s reconstructed activation map was similar to the 

empirical activation map of the task (obtained by averaging the activation maps of all 

experiments employing the task). Therefore, we computed Pearson’s correlation coefficient 

between all pairs of reconstructed and empirical activation maps, yielding a 7 x 7 correlation 

matrix (since there were 7 tasks).  

 

2.4.5 Correspondence between cognitive components and resting-state networks 

Motivated by similarities between task and resting-state networks (Smith et al., 2009; 

Laird et al., 2011; Yeo et al., 2015), we compared the cognitive components of self-generated 

thought with a previously published set of 17 resting-state networks (Yeo et al., 2011). For 

each resting-state network and each cognitive component, the probability of the cognitive 

component activating a voxel (Pr(voxel | component)) was averaged across all voxels within 

the network, resulting in an average probability of a component activating the given network.  

 

2.5 Left inferior frontal junction (IFJ) 

2.5.1 Activation foci of experiments activating the left IFJ 

To explore task-dependent co-activation patterns expressed by the left IFJ, we 

considered activation foci from experiments reporting activation within a left IFJ seed region 

(Figure S1) delineated by a previous study (Muhle-Karbe et al. 2015). Muhle-Karbe and 

colleagues performed a co-activation-based parcellation of a left lateral prefrontal region into 

six parcels, including an IFJ region (Muhle-Karbe et al., 2015). The parcellation procedure 

assumed that voxels within a parcel exhibited a single co-activation pattern. Thus, the 

advantage of using this particular IFJ seed region (instead of an IFJ region from a different 

https://neurovault.org/collections/4684/
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study) is that this region is thought to exhibit a single co-activation pattern (according to 

MACM).  

This seed region is publicly available on ANIMA (Reid et al. 2016; http://anima.fz-

juelich.de/studies/MuhleKarbe_2015_IFJ). We selected experiments from the BrainMap 

database with at least one activation focus falling within the IFJ seed region. We further 

restricted our analyses to experimental contrasts involving normal subjects. Overall, there were 

323 experiment contrasts from 238 studies with a total of 5201 activation foci. The list of all 

experiments included in the dataset are provided in Supplemental Method S8. 

 

2.5.2 Discovering co-activation patterns of the IFJ 

To apply the author-topic model to discover co-activation patterns, we consider each of 

the 323 experimental contrasts to employ its own unique task category (Figure 4). In the 

parlance of the author-topic model, we assumed each document (experiment) has its own 

unique author (task). The premise of the model is that the IFJ expresses one or more 

overlapping co-activation patterns depending on task contexts. A single experiment activating 

the IFJ might recruit one or more co-activation patterns. The model parameters are the 

probability that an experiment would recruit a co-activation pattern (Pr(co-activation pattern | 

experiment)), and the probability that a voxel would be involved in a co-activation pattern 

(Pr(voxel | co-activation pattern)). The parameters were estimated from the 5201 activation 

foci from the previous section using the CVB algorithm (Supplemental Method S2 and S5). 

BIC was used to estimate the optimal number of co-activation patterns (Supplemental Method 

S4).  

 

http://anima.fz-juelich.de/studies/MuhleKarbe_2015_IFJ
http://anima.fz-juelich.de/studies/MuhleKarbe_2015_IFJ
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Figure 4. Author-topic model for discovering co-activation patterns of the inferior frontal 
junction (IFJ). In contrast to Figure 2, this instantiation of the model assumes that each 
experiment constitutes a unique task. The premise of the model is that the IFJ expresses 
multiple overlapping task-dependent co-activation patterns. The model parameters are the 
probability of an experiment recruiting a co-activation pattern (Pr(co-activation pattern | 
experiment)), and the probability of a voxel being associated with a co-activation pattern 
(Pr(voxel | co-activation pattern)). 
 

  
2.5.3 Interpreting co-activation patterns of the IFJ 

Similar to the previous application on self-generated thought, the matrix Pr(voxel | co-

activation pattern), 𝛽 , was visualized as 𝐾  brain images in both fsLR surface space and 

MNI152 volumetric space. Like before, isolated surface clusters with less than 20 vertices were 

removed for the purpose of visualization. Unthresholded spatial maps of the co-activation 

patterns are available on NeuroVault (Gorgolewski et al., 2015) at 

https://neurovault.org/collections/4718/. 

Because each of the 323 experiments was treated as employing a unique task category, 

Pr(co-activation pattern | experiment), 𝜃, is a matrix of size 𝐾 ×  323. 𝜃 was further mapped 

onto BrainMap task categories to assist in the interpretation. More specifically, since the 

experiments were extracted from the BrainMap database, each experiment was tagged with one 

or more BrainMap task categories (Table S1). The Pr(co-activation pattern | experiment) was 

averaged across experiments employing the same task category to estimate the probability that 

https://neurovault.org/collections/4718/
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a task category would recruit a co-activation pattern (Pr(co-activation pattern c | task t)). 

Further details of this procedure are found in Supplemental Method S6. The Pr(co-activation 

pattern | task) can be interpreted as follows. Suppose Pr(co-activation pattern C1 | semantic 

monitoring/discrimination) is equal to 0.51 and we have a semantic monitoring/discrimination 

experiment that reports activation in left IFJ and 100 activation foci. Then, on average, 51 foci 

will fall inside co-activation pattern C1.  

We note that directly using the BrainMap task categories to interpret the co-activation 

patterns is tricky. This is because a BrainMap task category might only have a very small 

percentage of experiments activating the IFJ, so these experiments might not be representative 

of the task category. For example, of the 230 experiments in the BrainMap database labeled as 

the “Encoding” task category, only 13 experiments reported activations in the left IFJ. Thus, 

the 13 experiments were not simply encoding tasks, but encoding tasks that happened to 

activate the IFJ. This is the reason why the BrainMap task categories were not directly utilized 

in the author-topic model for the IFJ analysis and that each experiment was treated as 

employing a unique task category (c.f. self-generated thought in Section 2.4).  

To ensure an appropriate interpretation, we inspected the original publications 

associated with the top three experiments with the highest Pr(co-activation pattern | 

experiment) for each of the top three tasks associated with each co-activation pattern, i.e., nine 

publications for each co-activation pattern. The literature analysis allowed us to determine if 

there were common neural processes underlying the subset of experiments within each task 

category that strongly activated the IFJ.  

 

2.5.4 Goodness of fit 

For each co-activation pattern, activation maps of the top three experiments with the 

highest probability of recruiting a co-activation pattern (i.e., Pr(co-activation pattern | 

experiment)) for each of the top three tasks associated with the co-activation pattern (i.e., nine 

activation maps in total) were averaged, resulting in an empirical activation map associated 

with each co-activation pattern. The model fit was good if the empirical activation map was 

similar to the estimated co-activated pattern. Therefore, we computed Pearson’s correlation 

coefficient between all pairs of empirical activation maps and co-activation maps, yielding a 

𝐾 ×  𝐾 correlation matrix, where K is the number of co-activation patterns estimated by BIC.  
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2.6 Data and code availability 

Activation foci from the meta-analysis of self-generated thought and the source code 

of the author-topic model, including the visualization and analysis tools, are publicly available 

at https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-

analysis/Ngo2019_AuthorTopic. The activation foci from the meta-analysis of IFJ can be 

obtained via a collaborative-use license agreement with BrainMap 

(http://www.brainmap.org/collaborations.html). 

  

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
http://www.brainmap.org/collaborations.html
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3 Results 

3.1 Overview 

In Section 3.2, we show simulation results suggesting that the author-topic model 

compares favorably with ICA in the goal of discovering latent patterns in coordinate-based 

meta-analysis. We then explored the cognitive components of self-generated thought (Section 

3.3) and the co-activation patterns of the IFJ (Section 3.4). Finally, Section 3.5 discusses a 

few control analyses.  

 

3.2 Simulations 

 Figure 5 shows the results of one representative simulation (see Section 2.3 for details). 

Figure 5A shows the groundtruth 2D “brain” maps for this representative simulation run. The 

two leftmost columns show simulated activation foci as white crosses overlaid on top of the 

2D Gaussian distributions used to generate the foci. The rightmost bar chart shows the 

probability of each of the 5 tasks recruiting a component. 

The rightmost column of Figure 5B shows the author-topic model estimates of the 

probability of each of the 5 tasks recruiting a component. The rightmost column of Figures 5C 

to 5E shows the ICA mixture weights, normalized so they sum to one2. The mixture weights 

represent the association between the tasks and the components. The numbers at the bottom of 

each panel are the correlations between the estimates and groundtruth averaged across 100 

simulation runs. In general, the author-topic model yielded better estimates of the associations 

between tasks and components.  

Figure 5B shows the author-topic model estimates, while Figures 5C to 5E show the 

ICA estimates. The two leftmost columns show the spatial maps of the two components 

estimated by the author-topic model or ICA. The numbers at the bottom of each panel are the 

correlations between the estimated and groundtruth “brain” maps averaged across 100 

simulation runs. In general, the author-topic model yielded better estimates of the groundtruth 

“brain” maps. It is also worth noting that the ICA spatial maps showed negative values, even 

though the simulation runs had been constrained to those where ICA mixture weights were 

positive3. As previously explained (Section 2.3.1), negative values are not meaningful in the 

context of coordinate-based meta-analysis.  

                                                      
2 Recall that simulation runs were discarded if ICA yielded negative weights.  
3 Note that this is after adding back the mean signal removed during the ICA de-meaning step. 
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Figure 5. Simulation comparing the author-topic model and ICA. (A) Single representative 
simulation run. Two leftmost columns show activation foci (white crosses) on top of 
Gaussian distributions used to generate the foci. Rightmost bar chart shows the probability of 
each of the 5 tasks recruiting a component. (B) Author-topic model estimates. (C) ICA 
estimates. Number below each panel is the correlation between model estimates and 
groundtruth averaged across 100 simulation runs. Observe that ICA can yield negative 
weights, which do not make sense in the context of a coordinate-based meta-analysis (see 
discussion in Section 2.3.1). We note that about 300 simulation runs were run in order to 
generate 100 simulation runs in which ICA estimates of mixture weights were non-negative. 
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3.3 Self-generated thought 

3.3.1 ALE meta-analysis of self-generated thought 

Figure 6 shows the activation likelihood estimate (ALE) of experiments involving self-

generated thought. Statistical significance was established with 1000 permutations. The map 

was thresholded at a voxel-wise uncorrected threshold of p < 0.001 and cluster-level family-

wise error rate threshold of p < 0.01. Consistent with previous studies, ALE reveals a 

constellation of regions typically referred to as the default network (Raichle et al., 2001; 

Buckner et al. 2008; Spreng et al. 2009). However, as previously discussed, ALE cannot reveal 

functional sub-domains within self-generated thought without prior assumptions about the sub-

domains. Therefore, in the next section, we explored the use of the author-topic model. 

 

Figure 6. Activation likelihood estimate (ALE) of experiments involving self-generated 
thought. Consistent with previous studies, ALE reveals a set of regions corresponding to the 
default network. However, ALE cannot provide insights into functional sub-domains without 
prior assumptions about the sub-domains. 
 

 

3.3.2 Cognitive components of self-generated thought 

Figure 7 shows the cognitive components of self-generated thought estimated by the 

author-topic model. Figure 7A shows the BIC score as a function of the number of estimated 

cognitive components. A higher BIC score indicates a better model. Because the 2-component 

estimate achieved the highest BIC score, subsequent results will focus on the 2-component 

estimate.  
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The 2-component estimate is shown in Figure 7B. The seven tasks recruited the two 

cognitive components to different degrees. The top tasks recruiting component C1 were 

“Navigation” and “Autobiographical Memory”. In contrast, the top tasks recruiting component 

C2 were “Narrative Comprehension”, “Theory of Mind (story-based)”, “Task deactivation”, 

“Theory of Mind (nonstory-based)”, and “Moral Cognition”.  

 
Figure 7. Cognitive components of self-generated thoughts. (A) Bayesian Information 
Criterion (BIC) plotted as a function of the number of estimated cognitive components. A 
higher BIC indicates a better model. BIC peaks at 2 components. (B) 2-component model 
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estimates. Each line connects 1 task with 1 component. The thickness and brightness of the 
lines are proportional to the magnitude of Pr(component | task). For each component, the four 
leftmost figures show the surface-based visualization for the probability of components 
activating different brain voxels (i.e., Pr(voxel | component)), whereas the rightmost figure 
show a volumetric slice highlighting subcortical structures being activated differently across 
components. The top color bar is utilized for the surface-based visualization, whereas the 
bottom color bar is utilized for the volumetric slices. The tables on the right show the top tasks 
most likely to recruit the two components. The numbers in the right column correspond to Pr 
(component | task). Navigation and Autobiographical Memory preferentially recruited 
component C1, whereas Narrative Comprehension, Theory of Mind (ToM), Task Deactivation 
and Moral Cognition preferentially recruited component C2.  
 

Compared with Figure 6, the two cognitive components appeared to decompose the 

activation pattern revealed by ALE. The two cognitive components appeared to activate 

different portions of the default network (Figure 7B). Focusing our attention to the medial 

cortex, both components had high probability of activating the medial parietal cortex. 

However, while component C2’s activation was largely limited to the precuneus, component 

C1’s activation also included the posterior cingulate and retrosplenial cortices in addition to 

the precuneus. Both components also had high probability of activating the medial prefrontal 

cortex (MPFC). However, component C1’s activations were restricted to the middle portion of 

the MPFC, while component C2’s activations were restricted to the dorsal and ventral portions 

of the MPFC. Finally, component C1, but not component C2, had high probability of activating 

the hippocampal complex. 

Switching our attention to the lateral cortex, component C1 had high probability of 

activating the posterior inferior parietal cortex, while component C2 had high probability of 

activating the entire stretch of cortex from the temporo-parietal junction to the temporal pole. 

Component C2 was significantly more likely than component C1 to activate the inferior frontal 

gyrus. 

 

3.3.3 Goodness of fit 

Figure 8 shows the correlation matrix between the empirical activation maps of seven 

tasks involving self-generated thought (rows) and seven task activation maps reconstructed 

from the author-topic model parameter estimates (columns). The diagonal entries of the 

correlation matrix were significantly higher than the off-diagonal entries: average diagonal 

entry was 0.69, while the average off-diagonal entry was 0.50. Overall, this suggests a good 

model fit. However, the diagonal entries were not always the highest and there was a clear 

block-diagonal structure. Not surprisingly, the top left block corresponded to the top two tasks 
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recruiting component C1 (Figure 7), while the bottom right block corresponded to the top five 

tasks recruiting component C2 (Figure 7).  

 

Figure 8. Goodness of fit of the author-topic model for self-generated thought. The matrix 
represents the correlations between the empirical activation maps (rows) and reconstructed 
activation maps (columns) of seven tasks. The tasks follow the same ordering as in Figure 7. 
The diagonal values (average r = 0.69) were larger than off-diagonal values (average r = 0.50), 
suggesting a good model fit. 
 

 

3.3.4 Correspondence with resting-state networks 

 The average probability of each self-generated thought cognitive component activating 

each resting-state network (Yeo et al., 2011) is shown in Figure S2. Four resting-state networks 

with the highest probability of being activated by either component are shown in Figure 9. 

Three of these resting-state networks were previously considered to be fractionation of the 

default network (Yeo et al., 2014).  

 The Default C resting-state network was most strongly activated by component C1, 

while the temporal parietal resting-state network was most strongly activated by component 
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C2. On the other hand, Default A and B resting-state networks were preferentially activated by 

components C2.  

 

Figure 9. Average probability of self-generated thought cognitive components activating 
voxels within 4 resting-state networks (Yeo et al. 2011). The naming of the four resting-state 
networks followed the convention of previous literature (Kong et al., 2018; Li et al., 2018). 
Default C resting-state network was primarily activated by component C1, while the temporal 
parietal resting-state network was primarily activated by component C2. On the other hand, 
Default A and B resting-state networks were preferentially activated by component C2. 
 
 

3.4 Left inferior frontal junction (IFJ) 

3.4.1 ALE meta-analysis of the left IFJ’s co-activation pattern 

Figure 10 shows the co-activation pattern of the left IFJ estimated by the application of 

ALE to meta-analytic co-activation modeling (Muhle-Karbe et al., 2015). Statistical 

significance was established with 1000 permutations. The map was thresholded at a voxel-wise 

uncorrected threshold of p < 0.001 and cluster-level family-wise error rate threshold of p < 

0.01. The co-activation pattern was mostly bilateral and involved dorsolateral prefrontal cortex, 

anterior insula, superior parietal lobules, posterior medial frontal cortex and the fusiform gyri. 

As previously discussed, ALE delineates regions consistently activated across studies, but 
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cannot reveal potential task-dependent co-activation patterns. Therefore, in the next section, 

we explored the use of the author-topic model. 

 

Figure 10. Co-activation pattern of the left inferior frontal junction (IFJ) estimated by the 
application of ALE to perform meta-analytic co-activation mapping. The IFJ seed region is 
delineated by a white boundary. 
 

3.4.2 Task-dependent co-activation patterns of the left IFJ 

Figure 11 shows the co-activation patterns of the left IFJ estimated by the author-topic 

model. Figure 11A shows the BIC score as a function of the number of estimated co-activation 

patterns. There were two peaks corresponding to the 3-pattern and 5-pattern estimates. Figure 

S3 shows the 5-pattern estimate. Although the 5-pattern estimate had a higher BIC score than 

the 3-pattern estimate, the co-activation patterns appeared to fractionate the IFJ into smaller 

territories. While this fractionation was intriguing, our goal was to examine if the IFJ exhibited 

task-dependent co-activation patterns and not whether it can be further fractionated. Thus, the 

5-pattern estimate represented a degenerate solution from this perspective4.  

Figure 11B shows the co-activation patterns from the 3-pattern estimate. Unlike the 5-

pattern estimate, the 3 co-activation patterns appeared to overlap completely within the IFJ. 

Therefore, subsequent results will focus on the 3-pattern estimate. Overall the 3 co-activation 

patterns appeared to decompose the consensus co-activation pattern revealed by ALE (Figure 

10). 

                                                      
4 Given that the “undesirable” 5-pattern estimate had the highest BIC, these results 
emphasized the fact that the BIC should only be treated as a guide to the number of cognitive 
components or co-activation patterns, rather than providing a definitive answer.  
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Co-activation pattern C1 was left lateralized and might be recruited in tasks involving 

language processing. Co-activation pattern C2 involved bilateral superior parietal and posterior 

medial frontal cortices, and might be recruited in tasks involving attentional control. Co-

activation pattern C3 involved bilateral frontal cortex, anterior insula and posterior medial 

frontal cortex, and might be recruited in tasks involving inhibition or response conflicts.  

  

 

Figure 11. Co-activation patterns involving the inferior frontal junction (IFJ). (A) Bayesian 
Information Criterion (BIC) plotted as a function of the number of estimated co-activation 
patterns. BIC peaks at 3 co-activation patterns. (B) 3-coactivation-pattern model estimates for 
the IFJ. Format follows Figure 7. “(C)” and “(O)” indicate “covert” and “overt” respectively. 
“Mon”, and “Disc” are short for “monitor” and “discrimination” respectively. “Count/ 
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Calculate” is short for “Counting/Calculation”. “WCST” is short for “Wisconsin Card Sorting 
Test”. The left IFJ is delineated by the black boundary in the left hemisphere.  

 

We now discuss in detail spatial differences among the co-activation patterns. Co-

activation pattern C3 strongly engaged bilateral anterior insula, while co-activation pattern C1 

only engaged left anterior insula. The activation of the anterior insula was much weaker in co-

activation pattern C2. 

In the frontal cortex, co-activation pattern C1 had high probability of activating the left 

inferior frontal gyrus, while co-activation pattern C3 had high probability of activating bilateral 

dorsal lateral prefrontal cortex. Although all three co-activation patterns also had high 

probability of activating the posterior medial frontal cortex (PMFC), the activation shifted 

anteriorly from co-activation patterns C1 to C2 to C3. 

In the parietal cortex, co-activation pattern C2 included the superior parietal lobule and 

the intraparietal sulcus in both hemispheres. C1 and C3 did not activate the superior parietal 

cortex. Finally, co-activation pattern C1 engaged bilateral superior temporal cortex, which 

might overlap with early auditory regions. Both co-activation patterns C1 and C2 also had high 

probability of activating ventral visual regions, especially in the fusiform gyrus. 

The top three tasks recruiting each co-activation pattern is shown in Figure 11B. For 

completeness, the top five tasks recruiting each co-activation pattern are shown in Table S2. 

The top tasks with the highest probability of recruiting co-activation pattern C1 were “Semantic 

Monitoring/Discrimination”, “Covert Reading”, and “Phonological Discrimination”. The top 

tasks recruiting co-activation pattern C2 were “Counting/Calculation”, “Task Switching”, and 

“Wisconsin Card Sorting Test”. The top tasks recruiting co-activation pattern C3 were “Go/ 

No-Go”, “Encoding”, and “Overt Word Generation”.  

At first glance, the top three tasks for co-activation pattern C3 (“Go/ No-Go”, 

“Encoding”, and “Overt Word Generation”) might not seem to be similar tasks. The reason for 

this incongruence was previously explained in Section 2.5.3 and was due to the fact that the 

experiments activating IFJ might not be representative of their task categories. Indeed, of the 

123 BrainMap experiments labeled as the “Overt Word Generation” task, only 6 experiments 

reported activation in the IFJ. Thus, the 6 experiments were not simply “Overt Word 

Generation” task, but “Overt Word Generation” experiments that happened to activate the IFJ. 

This motivated further examination of the original publications associated with the top 

experiments activating IFJ in order to interpret the co-activation patterns (see Section 4.2 for 

discussion).  
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Table S3A-S3C list the top three experiments with the highest Pr(co-activation pattern 

| experiment) for each of the top three tasks associated with each co-activation pattern. For 

example, Table S3-A lists the top three experiments employing “Semantic 

Monitoring/Discrimination”, “Covert Reading” or “Phonological Discrimination” with the 

highest Pr(co-activation pattern C1 | experiment).   

 
 

Table 1. Spatial locations of activation foci within the IFJ. Each row of the table shows the 
mean (standard deviation) of the coordinates of the activation foci (within IFJ) reported by 
the top 3 experiments with the highest Pr(co-activation pattern | experiment) for each of the 
top three tasks associated with each co-activation pattern falling inside the IFJ. See Figure S4 
for volumetric slices illustrating the locations of the activation foci within the IFJ. Across the 
3 co-activation patterns, the mean coordinates of the top experiments do not differ by more 
than 2.5mm in any dimension, suggesting that the co-activation patterns were not 
fractionating the IFJ. 
 

To further ensure that the 3 co-activation patterns were not fractionating IFJ (like the 

5-pattern estimate), Figure S4 illustrates the activation foci of the top three experiments with 

the highest Pr(co-activation pattern | experiment) for each of the top three tasks associated with 

each co-activation pattern falling inside the IFJ. Table 1 shows the mean and standard deviation 

of the coordinates of these activation foci (within IFJ) for each co-activation pattern. The mean 

locations of the IFJ activations across co-activation patterns did not differ by more than 2.5mm 

along any dimension, suggesting that the co-activation patterns were probably not simply sub-

dividing the IFJ. 

 

3.4.3 Goodness of fit 

Figure 12 shows the correlation matrix between IFJ’s co-activation patterns (columns) 

and the average activation maps of the top three tasks associated with each co-activation pattern 

(rows). The diagonal entries of the correlation matrix were significantly higher than the off-

diagonal entries: average diagonal entry was 0.75, while the average off-diagonal entry was 

0.31. Overall, this suggests a good model fit. 

 x/mm y/mm z/mm 

Co-activation pattern C1 -40.33 (1.80) 3.89 (3.55) 30.67 (4.21) 

Co-activation pattern C2 -39.33 (3.16) 5.33 (4.92) 31.78 (5.45) 

Co-activation pattern C3 -39.40 (4.60) 6.40 (5.68) 29.70 (4.64) 
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Figure 12. Goodness of fit of the author-topic model for IFJ. The matrix represents the 
correlations between IFJ’s co-activation patterns (columns) and the average activation maps of 
the top three tasks associated with each co-activation pattern (rows). The top tasks of each co-
activation patterns are shown in Figure 11. The diagonal values (average r = 0.75) were larger 
than off-diagonal values (average r = 0.31), suggesting a good model fit.  
 

3.5 Control analyses 

3.5.1 Smoothing 

To create the input data for the author-topic model, the activation foci were smoothed 

with a 10mm binary smoothing kernel (see Section 2.2.3), consistent with previous work 

(Wager et al. 2003; Yarkoni et al. 2011; Yeo et al. 2015). Using different smoothing radii 

yielded similar cognitive components of self-generated thought (Figure S5) and co-activation 

patterns of the IFJ (Figure S6).  

 

3.5.2 Independent component analysis 

For comparison, Figure S7 shows the ICA (ICA1-nilearn) estimate of 2 components of 

self-generated thought. The estimates were quite similar to the author-topic estimate. However, 

the spatial maps contained negative values, which was inappropriate in the context of 

coordinate-based meta-analysis.   



 31 

 Figure S8 shows the ICA (ICA1-nilearn) estimate of 3 co-activation patterns of left IFJ. 

However, the 3 independent components appeared to fractionate the left IFJ into smaller 

territories (Figure S8), suggesting a degenerate solution to our problem, similar to the situation 

with the 5-pattern author-topic estimate (Figure S3). Furthermore, both the mixture weights 

and spatial maps contained negative values, which were not interpretable in the context of 

coordinate-based meta-analysis (Section 2.3.1).  
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4 Discussion 

The author-topic model encodes the intuitive notion that behavioral tasks recruited 

multiple cognitive components, supported by multiple brain regions (Mesulam 1990; Poldrack 

2006; Barrett & Satpute, 2013). We have previously utilized the author-topic model for large-

scale meta-analysis across functional domains (Yeo et al., 2015; Bertolero et al., 2015). By 

exploiting a recently developed CVB algorithm for the author-topic model (Ngo et al., 2016), 

we show that the model can also be utilized for small-scale meta-analyses focusing on 

discovering functional sub-domains or task-dependent co-activation patterns.  

A dominant approach for small-scale meta-analyses is ALE, which seeks to find 

consistent activations across neuroimaging experiments within a functional domain or mental 

disorder or seed region (also known as MACM). ALE treats heterogeneity across experiments 

as noise. By contrast, the author-topic model evaluates whether the heterogeneity might be 

indicative of robust latent patterns within the data. We applied the author-topic model to two 

applications: one on fractionating a functional sub-domain and one on discovering multiple 

task-dependent co-activation patterns.  

In the first application, the author-topic model encoded the notion that tasks involving 

self-generated thought might recruit one or more spatially overlapping. cognitive components. 

The model revealed two cognitive components that appeared to delineate two overlapping 

default sub-networks, consistent with the hypothesized functional organization of the default 

network (Andres-Hanna et al., 2014). In the second application, the author-topic model 

encoded the notion that experiments activating a brain region might recruit one or more co-

activation patterns dependent on task contexts (McIntosh, 2000). In the current application, the 

model revealed that the IFJ participated in three co-activation patterns, suggesting that IFJ 

flexibly co-activate with different brain regions depending on the cognitive demands of 

different tasks. Overall, our work suggests that the author-topic model is a versatile tool 

suitable for both small-scale and large-scale meta-analyses.  

 

4.1 Cognitive components of self-generated thought 

 Self-generated thought is a heterogeneous set of cognitive processes that includes 

inferring other people’s mental states, dealing with challenging moral scenarios, understanding 

narratives, retrieving autobiographical memories, internalizing semantic information, and 

mind-wandering. These processes are characterized by an absence of external stimuli, self-

related, and often involve simulation or inferential reasoning (Buckner et al., 2008; Spreng et 

al. 2009; Smallwood et al., 2011; Baird et al., 2011; Prebble at al. 2013; Smallwood, 2013). 
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Studies of tasks involving self-generated thought have consistently found the activation of the 

default network, suggesting its functional importance (Buckner et al. 2008; Spreng et al. 2009; 

Andrews-Hanna et al., 2010; Andrews-Hanna, 2012; Gorgolewski et al., 2014; Callard and 

Margulies, 2014). Additionally, the default network has been fractionated into sub-networks 

supporting different aspects of these stimulus independent cognitive processes (Buckner et al., 

2008; Uddin et al. 2009; Sestieri et al., 2011; Andrews-Hanna et al., 2010; Kim, 2012; Seghier 

and Price, 2012; Salomon et al., 2013; Bzdok et al., 2013).  

 The author-topic model revealed two cognitive components of self-generated thought 

that appeared to fractionate the default network (Figure 7). The default network has been 

defined as the set of brain regions that are more active during passive task conditions relative 

to active task conditions (Shulman et al., 1997; Buckner et al., 2008). While there have been 

multiple studies fractionating the default network (Andrews-Hanna et al., 2010; Mayer et al. 

2010; Kim, 2012; Yeo et al. 2014; Humphreys et al., 2015), the specific patterns of 

fractionation have differed across studies. The spatial topography of components C1 and C2 in 

this paper corresponded well to the previously proposed “medial temporal subsystem” and 

“dorsal medial subsystem” respectively (Figure 3A of Andrews-Hanna et al. 2014; Andrews-

Hanna et al., 2010). 

The first cognitive component C1 was strongly recruited by navigation and 

autobiographical memory tasks, suggesting its involvement in constructive mental simulation 

based upon mnemonic content (Andrews-Hanna et al., 2014). Constructive mental simulation 

is the process of combining information from the past in order to create a novel mental 

representation, such as imagining the future (Buckner and Carroll, 2007; Hassabis and 

Maguire, 2007; Schacter et al., 2007). “Navigation” tasks require constructive mental 

simulation to create a mental visualization (“scene construction”) for planning new routes and 

finding ways in unfamiliar contexts (Burgess et al., 2002; Byrne et al. 2007). On the other hand, 

“Autobiographical Memory” tasks require constructive mental simulation to project past 

experience (“constructive episodic simulation”; Atance and O’Neil, 2001; Schacter et al. 2007) 

or previously acquired knowledge (“semantic memory”; Irish et al., 2012; Brown et al. 2014) 

across spatiotemporal scale to enact novel perspectives. Overall, cognitive component C1 

seems to support the projection of self, events, experiences, images and knowledge to a new 

temporal or spatial context based upon an associative constructive process, likely mediated by 

the hippocampus and connected brain structures (Moscovitch et al., 2016, Christoff et al., 

2016). 
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The second cognitive component C2 was strongly recruited by narrative 

comprehension and theory of mind, suggesting its involvement in mentalizing, inferential, and 

conceptual processing (Andrews-Hanna et al., 2014). Mentalizing is the process of monitoring 

one’s own mental states or predicting others’ mental states (Frith and Frith, 2003), while 

conceptual processing involves internalizing and retrieving semantic or social knowledge 

(Binder and Desai, 2011; Overwalle, 2009). “Narrative Comprehension” engages conceptual 

processing to understand the contextual settings of the story, and requires mentalizing to follow 

and infer the characters’ thoughts and emotions (Gernsbacher et al., 1998; Mason et al. 2008). 

“Theory of Mind” tasks require the recall of learned knowledge, social norms and attitudes to 

form a meta-representation of the perspectives of other people (Leslie, 1987; Frith and Frith, 

2005; Binder and Desai, 2011). The grouping of Narrative Comprehension and Theory of Mind 

tasks echoes the link between the ability to comprehend narratives and the ability to 

understanding others’ thoughts in developmental studies of children (Guajardo and Watson, 

2001; Slaughter et al. 2007; Mason et al. 2008). 

The two cognitive components had high probability of activating common and distinct 

brain regions. Both components engaged the posterior cingulate cortex and precuneus, which 

are considered part of the “core” sub-network that subserves personally relevant information 

necessary for both constructive mental simulation and mentalizing (Andrews-Hanna et al. 

2014). The distinct brain regions supporting each cognitive component also corroborated the 

distinct functional role of each component. For instance, component C1, but not C2, had high 

probability of activating the medial temporal lobe and hippocampus. This is consistent with 

neuropsychological literaure showing that patients with impairment of the medial temporal 

lobe and hippocampus retain theory of mind and narrative construction capabilities, while 

suffering deficits in episodic memories and imagining the future (Hassabis et al., 2007; 

Rosenbaum et al., 2007; Rosenbaum et al., 2009; Race et al., 2011;). 

The cognitive components of self-generated thought estimated by the author-topic 

model overlapped with default sub-networks A, B and C, as well as the temporal parietal 

network from a previously published resting-state parcellation (Yeo et al., 2011; Kong et al., 

2018). The components loaded differentially on the resting-state networks, thus providing 

insights into the functions of distinct resting-state networks. Although resting-state fMRI is a 

powerful tool for extracting brain networks, participants do not actively perform a task during 

resting-state fMRI. Thus, coordinate-based meta-analysis can be used in conjunction with 

resting-state fMRI to discover new insights into brain networks and their functions (Seeley et 

al., 2007; Smith et al., 2009; Laird et al., 2011).  
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4.2 Co-activation patterns of the left IFJ 

The inferior frontal junction (IFJ) is located in the prefrontal cortex at the intersection 

between the inferior frontal sulcus and the inferior precentral sulcus (Brass et al., 2005; 

Derrfuss et al., 2005). The IFJ has been suggested to be involved in a wide range of cognitive 

functions, including task switching (Brass and Cramon, 2002; Derrfuss et al., 2004, 2005), 

attentional control (Asplund et al. 2010; Baldauf and Desimone, 2014), detection of conflicting 

responses (Chikazoe et al. 2009; Levy and Wagner, 2011), short-term memory (Zanto et al. 

2010; Sneve et al. 2013), construction of attentional episodes (Duncan, 2013) and so on. Using 

the author-topic model, we found that the IFJ participated in three task-dependent co-activation 

patterns.  

Co-activation pattern C1 might be involved in some aspects of language processing, 

such as phonological processing for lexical understanding. Phonological processing is an 

important linguistic function, concerning the use of speech sounds in handling written or oral 

languages (Wagner and Torgesen 1987; Poldrack et al. 1999; Friederici 2002). The top tasks 

associated with C1 were “Semantic Monitoring/ Discrimination”, “Covert Reading”, and 

“Phonological Discrimination” (Figure 11B). Inspecting the top three experiments recruiting 

these three tasks (Table S3-A) offered more insights into the functional characteristics of co-

activation pattern C1. The top “Semantic Monitor/Discrimination” experiments with the 

highest probability of recruiting co-activation pattern C1 examined retrieval of semantic 

meaning (Thompson-Schill et al. 1999; Wagner et al. 2001) and an experiment requiring lexical 

perception and not just perception of elementary sounds (Poeppel et al., 2004). The top “Covert 

Reading” experiments most strongly associated with C1 identified a common brain network 

activated by both reading and listening (Jobard et al., 2007), as well as language comprehension 

across different media (Small et al., 2009), suggesting the involvement of C1 in generic 

language comprehension. Among “Phonological Discrimination” experiments, C1 was most 

highly associated with experiments engaging transcoding of phonological representation for 

semantic perception (Xu et al. 2001; Démonet et al. 1994). The language and phonological 

processing interpretation was supported by C1’s strong left lateralization with high probability 

of activating classical auditory and language brain regions, including the left (but not right) 

inferior frontal gyrus and bilateral superior temporal cortex. 

Co-activation pattern C2 might be engaged in attentional control, especially aspects of 

task maintenance and shifting of attentional set. Attentional set-shifting is the ability to switch 

between mental states associated with different reactionary tendencies (Omori et al. 1999, 

Konishi et al. 1998). The top three tasks most highly associated with C2 were 
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“Counting/Calculation”, “Task Switching”, and “Wisconsin Card Sorting Test” (Figure 11B). 

Inspecting the top three experiments under the top task paradigms provided further insights 

into the functional characteristics of co-activation pattern C2 (Table S3-B). The top “Counting/ 

Calculation” experiments most strongly recruiting co-activation pattern C2 involved switching 

of resolution strategies in executive function. For example, one experimental contrast seeks to 

isolate demanding mental calculation but not retrieval of numerical facts (Zago et al. 2001; 

Rivera et al. 2002), suggesting C2’s involvement in the selection and application of strategies 

to solve arithmetic problems.  The top “Task Switching” experiments most strongly associated 

with C2 involved the switching of mental states to learn new stimulus-response or stimulus-

outcome associations (Omori et al. 1999; Nahagama et al. 2001; Sylvester et al. 2003). C2 was 

also strongly expressed by “Wisconsin Card Sorting Test” (WCST) experiments, which 

required attentional set-shifting to change behavioral patterns in reaction to changes of 

perceptual dimension (color, shape, or number) upon which the target and reference stimuli 

were matched (Berman 1995; Konishi 2002; Konishi 2003). Overall, the attentional control 

interpretation of co-activation pattern C2 is supported by C2’s high probability of activating 

classical attentional control regions, such as the superior parietal lobule and the intra-parietal 

sulcus, although there is a clear lack of DLPFC activation. 

Co-activation pattern C3 might be engaged in inhibition or response conflict resolution. 

Conflict-response resolution is a central aspect of cognitive control, which involves monitoring 

and mediating incongruous response tendencies (Pardo et al. 1990; Braver et al. 2001; Barch 

et al. 2001). Co-activation pattern C3 is most strongly recruited by experiments utilizing 

“Go/No-Go”, “Encoding” and “Overt Word Generation” tasks (Figure 11B). Closer 

examination of the top three experiments under each task paradigm provided further insights 

into the functional characteristics of C3 (Table S3-C). The top experiments utilizing “Go/No-

Go” required the monitoring, preparing and reconciling of conflicting tendencies to either 

giving a “go” or “stop” (no-go) response (Chikazoe et al. 2009, Simoes-Franklin et al. 2010; 

Kawashima et al. 1996). It might be surprising at first glance that the “Go/No-Go” task was 

grouped together with “Encoding” and “Overt Word Generation” tasks. However, the top 

experiments utilizing the “Encoding” and “Overt Word Generation” task all required subjects 

to make competing decisions (Table S3-C). The top “Encoding” experiments most strongly 

associated with C3 required selective association of to-be-learnt items with existing memory 

or knowledge organization for effective enduring retention of new information (Kapur et al. 

1996; Callan et al. 2010; Mickley et al. 2009). The top experiments utilizing the “Overt Word 

Generation” task required subjects to make competing decision, such as inhibiting 
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verbalization of wrong words in verbal fluency task (Baker et al. 1997; Ravnkilde et al. 2002) 

or inhibiting a predominant pattern (regular past-tense verbs) in favor of generating less 

conventional forms (irregular past-tense verbs) (Desai et al. 2006). Overall, the inhibition or 

response conflict interpretation of co-activation pattern C3 is supported by C3’s high 

probability of activating classical executive function regions, including the bilateral dorsal 

lateral prefrontal cortex.   

The intriguing location of the left IFJ and its functional heterogeneity suggests the role 

of IFJ as an integrative hub for different cognitive functions. For example, the IFJ has been 

suggested to consolidate information streams for cognitive control from its bordering brain 

regions (Brass et al., 2005). The involvement of the IFJ in three task-dependent co-activation 

patterns supported the view that the IFJ orchestrates different cognitive mechanisms to allow 

their operations in harmony. 

 
5 Conclusion 

Heterogeneities across neuroimaging experiments are often treated as noise in 

coordinate-based meta-analyses. Here we demonstrate that the author-topic model can be 

utilized to determine if the heterogeneities can be explained by a small number of latent 

patterns. In the first application, the author-topic model revealed two overlapping cognitive 

components subserving self-generated thought. In the second application, the author-topic 

revealed the participation of the left IFJ in three task-dependent co-activation patterns. These 

applications exhibited the broad utility of the author-topic model, ranging from discovering 

functional subdomains or task-dependent co-activation patterns. 
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6 Appendix 

 
Pseudo-code Function 

(1) Read the input activation foci and task labels  CBIG_AuthorTopic_PreprocessIn
put 

(2) Initialize the model’s hyperparameters  CBIG_AuthorTopic_SetupParame
ters  

(3) Repeat for N = 1000 re-initializations  

      (a) Initialize the variational parameters  CBIG_AuthorTopic_InitializePara
ms 

      (b) Update the variational parameters  (Eq. 14 in 
Supplemental S1) 

 

- Approximate 𝐸𝑞(𝑁∙∙𝑐∙
−𝑒𝑓

) and 𝑉𝑎𝑟𝑞(𝑁∙∙𝑐∙
−𝑒𝑓

) CBIG_AuthorTopic_ComputeVar
iationalTerm__N_c 

- Approximate 𝐸𝑞 (𝑁∙∙𝑐𝑣𝑒𝑓

−𝑒𝑓
) and 𝑉𝑎𝑟𝑞 (𝑁∙∙𝑐𝑣𝑒𝑓

−𝑒𝑓
) CBIG_AuthorTopic_ComputeVar

iationalTerm__N_cv 

- Approximate 𝐸𝑞(𝑁∙𝑡∙∙
−𝑒𝑓

) and 𝑉𝑎𝑟𝑞(𝑁∙𝑡∙∙
−𝑒𝑓

) CBIG_AuthorTopic_ComputeVar
iationalTerm__N_t 

- Approximate 𝐸𝑞(𝑁∙𝑡𝑐∙
−𝑒𝑓

) and 𝑉𝑎𝑟𝑞(𝑁∙𝑡𝑐∙
−𝑒𝑓

) CBIG_AuthorTopic_ComputeVar
iationalTerm__N_tc 

- Update the variational parameters  (Eq. 14 in 
Supplemental S1) 

 

- Recompute the variational log likelihood. If it 
converges, go to step (3c), otherwise repeat from 
step (3b)  

 

      (c) Update the model parameters 𝜃𝑡𝑐 and 𝛽𝑐𝑣 (Eq. 16 
and 17 in Supplemental S1) 

CBIG_AuthorTopic_EstimatePara
ms 

 
 
Pseudo-code of the Collapsed Variational Bayes (CVB) algorithm for estimating the author-
topic model’s parameters. The left column outlines the main steps of the algorithm. The right 
column denotes the functions in the source code that correspond to each step. The source 
code of the CVB algorithm and the input file of the self-generated thought dataset are 
available at https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-
analysis/Ngo2019_AuthorTopic. Note that steps (2) and (3) can be called by a single function 
CBIG_AuthorTopic_RunInference. 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
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Beyond Consensus: Embracing Heterogeneity in Curated Neuroimaging 
Meta-Analysis 

 

Supplemental Material 
This supplemental material is divided into Supplemental Results and Supplemental 

Methods to complement Results and Methods section in the main text, respectively.  

1 Supplemental Results 

1.1 Supplemental Result Tables 

1.1.1 Table S1. Definitions of 26 BrainMap task categories (paradigm classes) tagged to 
experiments activating the IFJ. Only paradigm classes tagged to at least 5 experiments 
were included. The definitions were extracted from BrainMap lexicon, available at 
http://www.brainmap.org/scribe/BrainMapLex.xls 

 
Paradigm Class Definition 

Counting/Calculation Count, add, subtract, multiply, or divide various stimuli (numbers, bars, dots, 
etc.) or solve numerical word problems. 

Cued Explicit 
Recognition/Recall 

A list of items (words, objects, textures, patterns, pictures, sounds) is 
presented and the subject is subsequently tested with cues to recall previously 
presented material.  

Delayed Match to Sample A stimulus that is followed by a probe item after a brief delay; subject is then 
asked to recall if the probe item was presented before the delay. 

Emotion Induction Stimuli with emotional valence (i.e. statements, films, music, pictures) to 
induce effect on mood. 

Encoding Memorize stimuli such as words, pictures, letters, etc. 
Incidental Encoding: A task in which the subject is creating new memories 
without purposely knowing that memorization is the task at hand.  Their 
memories are created thorough working in their environment and picking up 
information in the process. 

Face Monitor/Discrimination View face passively or discriminate human faces according to their order, 
gender, location, emotion, or appearance, etc.  

Film Viewing View movies or film clips. 

Finger Tapping/Button Press Tap fingers or press a button in a cued/non-cued manner. 

Go/No-Go Perform a binary decision (go or no-go) on a continuous stream of stimuli.   

n-back Indicate when the current stimulus matches the one from n steps earlier in the 
sequence. Load factor n can be adjusted to make the task more or less 
difficult. 

Orthographic Discrimination View letters and discriminate according to some written/printed feature (i.e. 
uppercase/lowercase, alphabetic order, same/different spelling of words, 
vowel/consonant, font type/size). 

Passive Listening Listen to auditory stimuli (speech, noise, tones, etc.) and make no response. 

Passive Viewing View visual stimuli (objects, faces, letter strings, etc.) and make no response. 
If the presented stimuli are faces, the experiments are co-coded with Face 
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Monitor/Discrimation. If presented stimuli are words, the experiments are not 
coded as passive viewing but rather as Reading (Covert). 

Phonological Discrimination View or listen to phonemes, syllables, or words and discriminate according to 
some feature of their sounds (rhyming, number of syllables, homophones, 
pronounceable nonwords, etc.).  

Reading (Covert) Silently read words, pseudo-words, characters, phrases, or sentences.  

Reading (Overt) Read aloud words, pseudo-words, logograms, phrases, or sentences.  

Reward A stimulus that serves the role of reinforcing a desired response. 

Semantic 
Monitor/Discrimination 

Discriminate between the meanings of individual lexical items or to indicate 
if target word is semantically related to the probe word. 

Stroop-Color Word Name the color of the ink for a list of words (color names) printed in 
congruent/incongruent colors, or determine if ink color and color name are 
congruent/incongruent. Color-congruent stimuli: ink color and color name 
are the same (e.g. the word "GREEN" printed in green ink). Color-
incongruent stimuli: ink color and color name differ (e.g. the word "GREEN" 
printed in red ink). 

Task Switching Switch from one task or goal to another. 

Tone Monitor/Discrimination Listen to tones passively or discriminate according to a sound property (i.e. 
order, timing, pitch, frequency, amplitude), and/or detect presence/absence of 
a tone.  

Visual Object Identification Identify an object based on its visual attributes (e.g. shape, color, viewing 
angle), or detect/discriminate changes on the object's visual properties (e.g. 
size, illumination, position, relation between parts). 

Visuospatial Attention Make cued/noncued shifts of visual attention to a particular spatial location in 
the visual field. Responses can be overt (with eye movement to target 
location) or covert (fixating on a central target while paying attention to 
spatial location changes of peripheral target). 

Wisconsin Card Sorting Test Sort cards into groups based on some dimension (i.e.: color, form, or number) 
that is changed intermittently, and requires subject to identify a new correct 
group dimension.  

Word Generation (Covert) Semantic: Listen to or view nouns and silently generate an associated verb, or 
view a category and silently generate as many exemplars as possible.  
Orthographic: Listen to or view a letter and silently generate as many words 
as possible that start with that letter. 
Phonologic: Listen to or view a word and silently generate words that rhyme. 

Word Generation (Overt) Semantic: Listen to or view nouns and overtly generate an associated verb, or 
view a category and overtly generate as many exemplars as possible. 
Orthographic: Listen to or view a letter and overtly generate as many words 
as possible that start with that letter.  
Phonologic:  Listen to or view a word and overtly generate words that rhyme. 
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1.1.2 Table S2. Top 5 tasks with the highest probabilities of recruiting a co-activation 
pattern involving the IFJ 

 
Co-activation Pattern C1 
Task 
Semantic Monitor/Discrimination 
Reading (Covert) 
Phonological Discrimination 
Film Viewing 
Word Generation (Overt) 

Pr (C1 | Task) 
0.51 
0.50 
0.49 
0.45 
0.42 

 
Co-activation Pattern C2 
Task 
Counting/Calculation 
Task Switching 
Wisconsin Card Sorting Task 
Stroop-Color Word 
Delayed Match to Sample 

Pr (C2 | Task) 
0.63 
0.60 
0.60 
0.49 
0.46 

 
Co-activation Pattern C3 
Task 
Go/ No-Go 
Encoding 
Word Generation (Overt) 
Reward 
Reading (Overt) 

Pr (C3 | Task) 
0.54 
0.44 
0.42 
0.41 
0.36 
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1.1.3 Table S3-A. Experiments with the highest probabilities of recruiting co-activation 
pattern C1 of IFJ 

 
Semantic Monitor/Discrimination 
PMID Author Title Exp Contrast Pr 
10390028 Thompson

-Schill 
1999 

A neural basis for category and 
modality specificity of semantic 
knowledge 

3 Retrieval of visual 
knowledge about nonliving 
things - baseline 

0.81 

14644105 Poeppel 
2004 

Auditory lexical decision, 
categorical perception, and FM 
direction discrimination 
differentially engage left and right 
auditory cortex 

5 Lexical decision 
of phonologically permissibl
e targets vs. frequency-
modulated signals 

0.80 

11502262 Wagner 
2001 

Recovering meaning: Left prefrontal 
cortex guides controlled semantic 
retrieval 

4 4 target items > 2 target 
items (weak cue-correct 
response association) 

0.79 

Reading (Covert) 
17110132 Jobard 

2007 
Impact of modality and linguistic 
complexity during reading and 
listening tasks 

3 Conjunction of reading and 
listening irrespective of the 
linguistic complexity 

0.87 

19155745 Small 2009 Your brain on Google: patterns of 
cerebral activation during internet 
searching 

3 Internet task in Internet-
savvy group 

0.72 

19155745 Small 2009 Your brain on Google: patterns of 
cerebral activation during internet 
searching 

2 Reading task in Internet-
naïve group 

0.64 

Phonological Discrimination 

11230098  Xu 2001 Conjoint and extended neural 
networks for the computation of 
speech codes: The neural basis of 
selective impairment in reading 
words and pseudowords 

4 Real-word rhyming – color-
matching with letters 
(Group)  

0.86 

7922456 Démonet 
1994 

A PET study of cognitive strategies 
in normal subjects during language 
tasks. Influence of phonetic 
ambiguity and sequence processing 
on phoneme monitoring 

4 Phoneme monitoring of 
perceptually ambiguous 
sequence of non-words – 
monitoring pure tones 

0.85 

11230098  Xu 2001 Conjoint and extended neural 
networks for the computation of 
speech codes: The neural basis of 
selective impairment in reading 
words and pseudowords 

7 Alternate-case rhyming – 
color-matching with letters 
(Group)  

0.83 

 
Each row shows one of the top 3 experiments with the highest probabilities of 

recruiting co-activation pattern C1 of IFJ and employing one of the top 3 tasks with the 
highest probabilities of recruiting C1, namely “Semantic Monitoring/Discrimination”, 
“Covert Reading”, and “Phonological Discrimination”. The “PMID” and “Title” columns list 
the PubMed ID and title of each study respectively. The “Author” column lists the last name 
of the first author and the year of publication of each study. The “Exp” column lists the 
experiment’s order in the respective study as reported in BrainMap. The “Contrast” column 
lists the experimental contrast of each experiment. The “Pr” column shows the probability 
that each experiment would recruit co-activation pattern C1. 
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1.1.4 Table S3-B. Experiments with the highest probabilities of recruiting co-activation 
pattern C2 of IFJ 

 
Counting/ Calculation 
PMID Author Title Exp Contrast Pr 
11162272  Zago 2001 Neural Correlates of Simple and Complex 

Mental Calculation  
4 Compute vs. retrieve 

masked by compute vs. 
read 

0.97 

11162272  Zago 2001 Neural Correlates of Simple and Complex 
Mental Calculation  

2 Compute vs. read 0.95 

12112763 Rivera 2002 Functional brain activation during 
arithmetic processing in females with 
fragile X Syndrome is related to FMR1 
protein expression 

3 Judge correctness of 
arithmetic equation 
with 3 operands 
(unaffected) – Control 

0.81 

Task Switching 
10401985 Omori 1999 Neuronal substrates participating in 

attentional set-shifting of rules for visually 
guided motor selection: a functional 
magnetic resonance imaging investigation 

2 Conjunction among 
alternate vs. rest, tie vs. 
rest, win vs. rest, lose 
vs. rest 

0.83 

11113037 Nagahama 
2001 

Dissociable mechanisms of attentional 
control within the human prefrontal cortex 

2 Reversal task 0.81 

12457760 Sylvester 
2003 

Switching attention and resolving 
interference: fMRI measures of executive 
functions 

3 Counter-switching task 
(blocked design) 

0.79 

Wisconsin Card Sorting Test 
8524452 Berman 

1995 
Physiological activation of a cortical 
network during performance of the 
Wisconsin Card Sorting Test: A positron 
emission tomography study 

1 Wisconsin Card 
Sorting Task > Control 

0.76 

12944506 Konishi 
2003 

Transient Activation of Superior Prefrontal 
Cortex during Inhibition of Cognitive Set 

2 Inhibition – Control 
(Subjects aware of the 
dimensional changes) 

0.66 

12032364 Konishi 
2002 

Hemispheric asymmetry in human lateral 
prefrontal cortex during cognitive set 
shifting 

2 Event B (omitting the 
negative feedback 
stimulus) – Event C 
(“null” change 
instruction) 

0.57 

 

Each row shows one of the top 3 experiments with the highest probabilities of 
recruiting co-activation pattern C2 of IFJ and employing one of the top 3 tasks with the 
highest probabilities of recruiting C2, namely “Counting/Calculation”, “Task Switching”, and 
“Wisconsin Card Sorting Test”. The “PMID” and “Title” columns list the PubMed ID and 
title of each study respectively. The “Author” column lists the last name of the first author 
and the year of publication of each study. The “Exp” column lists the experiment’s order in 
the respective study as reported in BrainMap. The “Contrast” column lists the experimental 
contrast of each experiment. The “Pr” column shows the probability that each experiment 
would recruit co-activation pattern C2. 
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1.1.5 Table S3-C. Experiments with the highest probabilities of recruiting co-activation 
pattern C3 of IFJ 

 
Go/No-Go 
PMID Author Title Exp Contrast Pr 
20016103 Chikazoe 

2009 
Preparation to Inhibit a Response 
Complements Response Inhibition during 
Performance of a Stop-Signal Task 

4 Disjunction analysis: 
Stop vs. Uncertain-go 
but not Uncertain-go vs. 
Certain-go 

0.80 

19718655 Simoes-
Franklin 
2010 

Executive function and error detection: 
The effect of motivation on cingulate and 
ventral striatum activity 

1 Go – No-go with 
punishment > Go – No-
go without punishment 

0.76 

8864300 Kawashima 
1996 

Functional anatomy of GO/NO-GO 
discrimination and response selection-a 
PET study in man 

14 Go – No-go > Control 
Task 

0.76 

Encoding 

8957565 Kapur1996 The neural correlates of intentional 
learning of verbal materials: A PET study 
in humans 

1 Encoding vs. Reading 0.64 

19882649 Callan 2010 Neural correlates of the spacing effect in 
explicit verbal semantic encoding support 
the deficient-processing theory 

9 Decreasing activity trend 
relative to verbal 
working memory 
conditions in massed vs. 
spaced presentation 
(p<0.05) 

0.61 

19674398  Mickley 
2009 

The effects of valence and arousal on the 
neural activity leading to subsequent 
memory 

5 Remembered – forgotten 
in positive > negative 
arousal info 

0.57 

Word Generation (Overt) 
9153677 Baker 1997 The interaction between mood and 

cognitive function studied with PET 
1 Increase in rCBF in 

verbal fluency – 
repetition task 

0.69 

12187466 Ravnkilde 
2002 

Putative tests of frontal lobe function: A 
PET-study of brain activation during 
Stroop's test and verbal fluency 

2 Verbal fluency - reading 0.67 

16494687 Desai 2006 FMRI of past tense processing: The 
effects of phonological complexity and 
task difficulty 

10 Generate iIrregular verbs 
- generate regular verbs 
(phonologically 
matched) 

0.42 

 
Each row shows one of the top 3 experiments with the highest probabilities of 

recruiting co-activation pattern C3 of IFJ and employing one of the top 3 tasks with the 
highest probabilities of recruiting C3, namely “Go/No-Go”, “Encoding”, and “Overt Word 
Generation”. The “PMID” and “Title” columns list the PubMed ID and title of each study 
respectively. The “Author” column lists the last name of the first author and the year of 
publication of each study. The “Exp” column lists the experiment’s order in the respective 
study as reported in BrainMap. The “Contrast” column lists the experimental contrast of each 
experiment. The “Pr” column shows the probability that each experiment would recruit co-
activation pattern C3.  
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1.2 Supplemental Result Figures 

 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. Illustration of the left IFJ seed region (Muhle-Karbe et al., 2015) in the 
sagittal, coronal and axial planes. 

  

  



Ngo et al.  Heterogeneity in Meta-Analysis 

 8 

 

Figure S2. Comparison of the cognitive components of self-generated thought with Yeo et al. 
(2011) 17-network parcellation. The top figure shows the surface-based visualization of the 
probability of cognitive components of self-generated thought activating different brain 
voxels (i.e., Pr(voxel | component)) overlaid on top of the 17-network boundaries (black 
lines) from Yeo et al. (2011). The bottom bar chart shows the average Pr(voxel | component) 
of each network. The yellow and red columns correspond to cognitive components C1 and 
C2 respectively.  
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Figure S3. Model estimates of 5 co-activation patterns involving the left inferior frontal 
junction (IFJ). Each row shows the surface-based visualization for the probability of a co-
activation pattern recruiting different brain voxels (i.e., Pr(voxel | co-activation pattern)). Co-
activation pattern C3 only involves a part of the left IFJ, suggesting that the 5-pattern model 
estimates might fractionate the seed region. 
  

C1 

C2 

C3 

C4 

C5 
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Figure S4. Volumetric slices suggesting the foci of co-activation patterns overlap within the 
left IFJ. Yellow indicates the left IFJ seed region. The colored dots correspond 2-mm-radius 
spheres centered about the activation foci reported by the top 3 experiments with the highest 
probabilities of recruiting IFJ co-activation patterns and employs one of the top 3 tasks with 
the highest probabilities of recruiting the given co-activation pattern. Blue, red and green dots 
correspond to the activation foci associated with co-activation patterns C1, C2, and C3, 
respectively. 
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Figure S5. Cognitive components of self-generated thought estimated by the author-topic 
model using different radii of smoothing kernel applied to the activation foci. The smoothing 
radii range from 6mm to 14mm. Cognitive components estimated with different smoothing 
kernel radii are similar to the components estimated with a 10mm-radius smoothing kernel. 
The average Pearsons’ correlation coefficient of the cognitive components estimated with 
different smoothing kernel radii against those estimated with a 10mm-radius ranges from 
0.60 (6mm) to 0.79 (14mm). The cognitive components estimated with a 10mm-radius 
smoothing kernel were shown in all results and analyses. 
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Figure S6. Co-activation patterns of the left inferior frontal junction estimated by the author-
topic model across different radii of smoothing kernel applied to the input data. The 
smoothing radii ranged from 6mm to 14mm. Co-activation patterns estimated with different 
smoothing kernel radii are similar to the co-activation patterns estimated with a 10mm-radius 
smoothing kernel. The average Pearsons’ correlation coefficient of the co-activation patterns 
estimated with different smoothing kernel radii against those estimated with a 10mm-radius 
ranges from 0.54 (6mm) to 0.85 (14mm). The  co-activation patterns estimated with a 10mm-
radius smoothing kernel were shown in all results and analyses.  
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Figure S7. 2-component ICA decomposition of self-generated thought dataset. Each 
independent component has both positive (yellow and red) and negative values (purple and 
maroon). The negative values in the independent components are not directly interpretable 
since the input data consisted of only “activation”, so it does not make sense to have “de-
activation” in the component estimates. 
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Figure S8. 3-component ICA decomposition of the left inferior frontal junction (IFJ) 
activation data. Each independent component has both positive (yellow and red) and negative 
values (purple and maroon). The negative values in independent components are not directly 
interpretable, since the input data consisted of only “activation”, so it does not make sense to 
have “de-activation” in the component estimates. Component C1 does not engage most of the 
left IFJ seed region while component C3 has both positive and negative values within the 
seed region, suggesting that the ICA components might be fractionating the seed region, 
rather than discovering multiple co-activation patterns. 
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2 Supplemental Methods 

2.1 (S1) Mathematical Model  
  

Figure S9 shows the formal graphical representation of the author-topic model for 

coordinate-based meta-analysis. The model assumes that there are 𝐸 experiments. The 𝑒-th 

experiment is associated with a set of tasks 𝝉$  and an unordered set 𝒗$ of 𝐹$ activated voxels. 

The location of the 𝑓-th activated voxel is denoted as 𝑣$), corresponding to one of 𝑉 =

284100 possible locations in MNI152 2mm space (Lancaster et al., 2007). The collection of 

activated voxels across all 𝐸 experiments is denoted as 𝒗 = {𝒗$}. The collection of tasks 

Figure S9. Formal graphical representation of the author-topic model for 
coordinate-based meta-analysis (Yeo et al. 2015). The circles represent random 
variables, while the squares represent non-random parameters. The edges represent 
statistical dependencies. There are 𝐸 experiments. The 𝑒-th experiment utilizes a set 
of behavioral tasks 𝝉$  and reports 𝐹$ number of activated voxels. The 𝑓-th activated 
voxel has an observed location 𝑣 , and associated with a latent (unobserved) 
component 𝐶 and a latent (unobserved) task 𝑇 ∈ 𝝉$ . The variables at the corners of 
the rectangles (plates) indicate the number of times the variables within the 
rectangles were replicated. Therefore 𝝉$  was replicated 𝐸  times, once for each 
experiment. For the 𝑒-th experiment, the variables	𝑣, 𝐶 and 𝑇 were replicated 𝐹$ 
times, once for each activated voxel. 𝜃  denotes 𝑃𝑟(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	|	𝑡𝑎𝑠𝑘)	  and 𝛽 
denotes 𝑃𝑟(𝑣𝑜𝑥𝑒𝑙	|	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡). Thus 𝜃 and 𝛽 are matrices, where each row is a 
categorical distribution summing to one. 𝛼  and 𝜂  are hyperparameters 
parameterizing the Dirichlet priors on 𝜃 and 𝛽 respectively.  
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across all 𝐸 experiments is denoted as 𝝉 = {𝝉$}. Thus, {𝒗, 𝝉} are the input data for the meta-

analysis. 

We assume that there are 𝐾 cognitive components and 𝑀 unique tasks in the dataset.  

For example, 𝑀 = 83 in Yeo et al. (2015). Each task has a certain (unknown) probability of 

recruiting a component Pr(component | task). The collection of all probabilities Pr(component 

| task) is denoted by a 𝑀 × 𝐾 matrix 𝜃. The 𝑡-th row and 𝑘-th column of θ corresponds to the 

probability of the 𝑡-th task recruiting the 𝑘-th component. Each component has a certain 

(unknown) probability of activating a voxel pr(voxel | component). The collection of all 

probabilities Pr(voxel | component) is denoted by a 𝐾 × 𝑉 matrix 𝛽. The 𝑘-th row and 𝑣-th 

column of 𝛽  corresponds to the probability of the 𝑘 -th component activating the 𝑣 -th 

MNI152 voxel. Symmetric Dirichlet priors with hyperparameter 𝛼 are assumed on θ, and 

hyperparameter 𝜂 on β. 

We assume that the activated voxels of an experiment are independent and identically 

distributed (conditioned on knowing 𝜃 and 𝛽). To generate the 𝑓-th activated voxel 𝑣$) in the 

𝑒-th experiment, a task 𝑇$) is sampled uniformly from the set of tasks 𝝉$  utilized by the 

experiment. Given task 𝑇$), a component 𝐶$) is sampled based on the probability that the 

task would recruit a component (corresponding to the 𝑇$)-th row of the 𝜃 matrix).  Given 

component 𝐶$) , the activation location 𝑣$)  is sampled based on the probability that the 

component would activate a voxel (corresponding to the 𝐶$)-th row of the 𝛽 matrix). 𝑇$) and 

𝐶$) are known as latent variables because they are not directly observed in the input data. We 

denote 𝑻 = P𝑇$)Q, 𝑪 = P𝐶$)Q as the collection of latent tasks and components across all 

experiments and activated voxels. 

Given the number of cognitive components 𝐾, the fixed hyperparameters 𝛼 and 𝜂, 

and the activated voxels and behavioral task categories {𝒗, 𝝉}  of all experiments, the 

parameters Pr(component | task) 𝜃, and Pr(voxel | component) 𝛽 can be estimated using 

different algorithms. Gibbs sampling was proposed in the original author-topic paper (Rosen-

Zvi et al. 2010). We also proposed a faster expectation maximization (EM) algorithm that 

was highly efficient on large amount of data (Yeo et al. 2015). In the present work, we used 

collapsed variational Bayes (CVB) inference (Ngo et al. 2016), which is less sensitive to 

choice of hyperparameters compared to the EM algorithm.  
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2.2 (S2) Collapsed Variational Bayes (CVB) Inference 

The CVB algorithm for the latent dirichlet allocation model (Blei et al., 2006) was 

introduced by Teh et al. (2006). We subsequently extended the CVB algorithm to the author-

topic model (Ngo et al. 2016). Here we provide the derivation of the algorithm in detail.  

We start by following the standard variational Bayesian inference procedure (Beal, 

2003) of constructing the lower bound of the log data likelihood: 

 

 log𝑝(𝒗	|	𝛼, 𝜂, 𝝉) 

= log∑ 𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉)𝑪,𝑻  	

= log∑ 𝑞(𝑪, 𝑻) X(𝒗,𝑪,𝑻	|	Y,Z,𝝉)
[(𝑪,𝑻)𝑪,𝑻  	

= log𝐸[(𝑪,𝑻) \
X(𝒗,𝑪,𝑻	|	Y,Z,𝝉)

[(𝑪,𝑻)
]  

≥ 𝐸[(𝑪,𝑻)(log𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉)) − 𝐸[(𝑪,𝑻)(log𝑞(𝑪, 𝑻)) 

 

 

 

 

 

(1) 

 

where 𝑞(𝑪, 𝑻) can be any probability distribution and the inequality (Eq. (1)) utilizes the 

Jensen inequality (Beal, 2003). We can indirectly maximize the data likelihood 𝑝(𝒗	|	𝛼, 𝜂, 𝝉) 

by finding the variational distribution 𝑞(𝑪, 𝑻) that maximizes the lower bound (Eq. (1)). The 

equality in Eq. (1) occurs when 𝑞(𝑪, 𝑻) = 𝑝(	𝑪, 𝑻	|	𝒗, 𝛼, 𝜂, 𝝉), i.e., when the variational 

distribution is equal to the true posterior distribution. However, computing the true posterior 

distribution of the latent variables is intractable because of dependencies among the variables 

constituting 𝑪 and 𝑻. Instead, the posterior of the latent variables (𝑪, 𝑻) is approximated to be 

factorizable (Teh et al., 2006): 

 

𝑞(𝑪, 𝑻) =``𝑞a𝐶$), 𝑇$)b,
cd

)ef

g

$ef

 (2) 

 

where 𝑞(𝑪, 𝑻) is a categorical distribution with parameters 𝜙: 

 

𝑞a𝐶$) = 𝑐, 𝑇$) = 𝑡b = 	𝜙$)ij				. (3) 

 

 
By plugging Eq. (3) into Eq. (1), we get  
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log𝑝(𝒗	|	𝛼, 𝜂, 𝝉) 

≥ 𝐸[(𝑪,𝑻)[log𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉)] − 𝐸[(𝑪,𝑻)[log𝑞(𝑪, 𝑻)] 

=	∑ ∑ 𝜙$)ij n𝐸[(𝑪odp,	𝑻odp)alog𝑝a𝒗, 𝑪q$), 𝑻q$), 𝐶$) = 𝑐, 𝑇$) =j∈𝝉d
r
ief

𝑡	s	𝛼, 𝜂, 𝝉)bt − ∑ ∑ ∑ ∑ 𝜙$)ij log𝜙$)ijj∈𝝉d
r
ief

cd
)ef

g
$ef ,     

 

 

 

 

(4) 

 

where the subscript “−𝑒𝑓” indicates the exclusion of corresponding variables 𝐶$) and 𝑇$). 

Maximizing the lower bound (Eq. (4)) by differentiating with respect to 𝜙 and using the 

constraint that ∑ ∑ 𝜙$)ijj∈𝝉d
r
ief = 1,  we get the update equation 

 

𝜙$)ij 		

=
exp n𝐸[(𝑪odp,	𝑻odp)alog𝑝a𝒗, 𝑪q$), 𝑻q$), 𝐶$) = 𝑐, 𝑇$) = 𝑡	s	𝛼, 𝜂, 𝝉)bt

∑ ∑ exp n𝐸[(𝑪odp,	𝑻odp)alog𝑝a𝒗, 𝑪q$), 𝑻q$), 𝐶$) = 𝑐′, 𝑇$) = 𝑡′	s	𝛼, 𝜂, 𝝉)btjy∈𝝉diy

,	

  

(5) 

 

The CVB algorithm involves iterating Eq. (5) till convergence. The remaining 

derivations concern the evaluation of Eq. (5). We first apply the conditional independence 

assumptions of the author-topic model to simplify the joint probability distribution in Eq. (5): 

 

log𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉) = log 𝑝(𝒗	|	𝑪, 𝜂) + log𝑝(𝑪	|	𝑻, 𝛼) + log𝑝(𝑻	|	𝝉). (6) 

 

By exploiting the properties of Dirichlet-multinomial compound distribution (Teh et al., 

2006), the first term on the right hand side of Eq. (6) is given by 

 

log𝑝(𝒗	|	𝑪, 𝜂) 

(𝑎)
= 	log`{

Γ(𝑉𝜂)
Γ(𝑉𝜂 + 𝑁∙∙i∙)

`
Γ(𝜂 + 𝑁∙∙i�)

Γ(𝜂)

�

�ef

�
r

ief

 

(𝑏)
= 	log`{

1
𝑉𝜂(𝑉𝜂 + 1)… (𝑉𝜂 + 𝑁∙∙i∙ − 1)

`𝜂(𝜂 + 1)… (𝜂 + 𝑁∙∙i� − 1)
�

�ef

�
r

ief

 

	= −� � log(𝑉𝜂 + 𝑚)
�∙∙�∙qf

�e�

r

ief

+�� � log(𝜂 + 𝑚)
�∙∙��qf

�e�

�

�ef

r

ief

, 

 

 

 

 

 

 

(7) 
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where equality (7a) arises from the definition of the Dirichlet-multinomial compound 

distribution and Γ(∙)  is the Gamma function. 𝑁$ji�  is the number of activation foci in 

experiment 𝑒 generated by task 𝑡, cognitive component 𝑐, and located at brain location 𝑣. The 

dot ‘∙’ indicates that the corresponding variable is summed out. For example, 𝑁⋅⋅i⋅ is the 

number of activation foci generated by component 𝑐 across all experiments. Equation (7b) 

arises from the identity Γ(𝑧 + 1) = 𝑧Γ(𝑧) for 𝑧 > 0. Using the same procedure, the second 

term on the right hand side of Eq. (6) can be written as 

 

log𝑝(𝑪	|	𝑻, 𝛼) = −� � log(𝐾𝛼 + 𝑚)
�∙�∙∙qf

�e�j	∈	𝝉

+ �� � log(𝛼 +𝑚)
�∙��∙qf

�e�

r

iefj	∈	𝝉

, (8) 

 

Substituting Eq. (7) and Eq. (8) back into Eq. (6), we get  
 

log𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉)

= −� � log(𝑉𝜂 + 𝑚)
�∙∙�∙qf

�e�

r

ief

+�� � log(𝜂 +𝑚)
�∙∙��qf

�e�

�

�ef

r

ief

−� � log(𝐾𝛼 + 𝑚)
�∙�∙∙qf

�e�j	∈	𝝉

+ �� � log(𝛼 +𝑚)
�∙��∙qf

�e�

r

iefj	∈	𝝉

+ log𝑝(𝑻	|	𝝉). 

(9) 

 

We are now ready to substitute Eq. (9) back into the update Eq. (5). The last term 

(log𝑝(𝑻	|	𝝉)) of Eq. (9) exists in both the numerator and denominator of Eq. (5) and thus 

cancels out. The remaining terms in Eq. (9) can be similarly simplified as follows. For 

example, the first term of Eq. (9) can be written as  

 

		−� � log(𝑉𝜂 + 𝑚)
�∙∙�∙qf

�e�

r

ief

=

⎣
⎢
⎢
⎡
− � � log(𝑉𝜂 + 𝑚)

�
∙∙��∙
odpqf

�e�

r

i�ef ⎦
⎥
⎥
⎤
− loga𝑉𝜂 + 𝑁∙∙i∙

q$)b. (10) 

  

Therefore when Eq. (9) is substituted back into Eq. (5), the first term of Eq. (10) would be 

present in both the numerator and denominator of Eq. (5) and cancel out. Using the similar 

evaluation for the remaining terms, update Eq. (5) becomes 
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𝜙$)ij ∝ exp n𝐸[a𝑪odp,	𝑻odpb \− loga𝑉𝜂 + 𝑁∙∙i∙
q$)b + log\𝜂 + 𝑁∙∙i�dp

q$) ] 	

− loga𝐾𝛼 + 𝑁∙j∙∙
q$)b + loga𝛼 + 𝑁∙ji∙

q$)b]t 
(11) 

for 𝑡 ∈ 𝝉$  (otherwise 𝜙$)ij is zero), where the first log	(∙) term in Eq. (11) comes from the 

first term in Eq. (9), the second log	(∙) term in Eq. (11) comes from the second term in Eq. 

(9), and so on. 

The log	(∙) terms in Eq. (10) can be approximated by a second-order Taylor’s series 

expansion about their means (Teh at al. 2006). Consider the Taylor’s series expansion of the 

log(𝑏 + 𝑥) function about a particular constant 𝑎: 

 

log(𝑏 + 𝑥) ≈ log(𝑏 + 𝑎) +
(𝑥 − 𝑎)
𝑏 + 𝑎 −

(𝑥 − 𝑎)�

2(𝑏 + 𝑎)� (12) 

  

Applying the expansion in Eq. (12) with 𝑏 = 𝑉𝜂, 𝑥 = 𝑁∙∙i∙
q$), and 𝑎 = 𝐸[aq𝑪dp,q	𝑻dpba𝑁∙∙i∙

q$)b,  

the first term in Eq. (11) can be approximated as  

 

𝐸[a𝑪odp,	𝑻odpba− loga𝑉𝜂 + 𝑁∙∙i∙
q$)bb 

(𝑎)
≈ − 𝐸[ �log \𝑉𝜂 + 𝐸[a𝑁∙∙i∙

q$)b] +
𝑁∙∙i∙
q$) − 𝐸[a𝑁∙∙i∙

q$)b
𝑉𝜂 + 𝐸[a𝑁∙∙i∙

q$)b
−
\𝑁∙∙i∙

q$) − 𝐸[a𝑁∙∙i∙
q$)b]

�

2 \𝑉𝜂 + 𝐸[a𝑁∙∙i∙
q$)b]

� � 

(𝑏)
= −log\𝑉𝜂 + 𝐸[a𝑁∙∙i∙

q$)b] +
𝑉𝑎𝑟[a𝑁∙∙i∙

q$)b

2 \𝑉𝜂 + 𝐸[a𝑁∙∙i∙
q$)b]

�, 

 

 

 

(13) 

 

where the subscript (𝑪q$), 	𝑻q$)) in 𝐸[a𝑪odp,	𝑻odpb(∙) was omitted in Eq. (13a) to reduce 

clutter. Eq. (13b) was obtained because the expectation of a constant is itself. Therefore the 

first term corresponds to 𝐸[ \log \𝑉𝜂 + 𝐸[a𝑁∙∙i∙
q$)b]] = log\𝑉𝜂 + 𝐸[a𝑁∙∙i∙

q$)b]. The second 

term evaluates to zero because 𝐸[ \𝐸[a𝑁∙∙i∙
q$)b] = 𝐸[a𝑁∙∙i∙

q$)b. 

Applying the same approximation for all log	(∙) terms in Eq. (11) and rearranging, the 

update equation for 𝜙 becomes 
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𝜙$)ij ∝

n𝜂 + 𝐸[ \𝑁∙∙i�dp
q$) ]t \𝛼 + 𝐸[a𝑁∙ji∙

q$)b]

\𝑉𝜂 + 𝐸[a𝑁∙∙i∙
q$)b] \𝐾𝛼 + 𝐸[a𝑁∙j∙∙

q$)b]
 

× exp

⎣
⎢
⎢
⎡ 𝑉𝑎𝑟[a𝑁∙∙i∙

q$)b

2 \𝑉𝜂 + 𝐸[a𝑁∙∙i∙
q$)b]

� −
𝑉𝑎𝑟[ \𝑁∙∙i�dp

q$) ]

2 n𝜂 + 𝐸[ \𝑁∙∙i�dp
q$) ]t

�

⎦
⎥
⎥
⎤
 

× exp �
𝑉𝑎𝑟[a𝑁∙j∙∙

q$)b

2 \𝐾𝛼 + 𝐸[a𝑁∙j∙∙
q$)b]

� −
𝑉𝑎𝑟[a𝑁∙ji∙

q$)b

2 \𝛼 + 𝐸[a𝑁∙ji∙
q$)b]

�� 

 

 

 

 
(14) 

 

The mean and variance of the counts in Eq. (14) can be evaluated using the current estimate 

of  𝜙. For example, 𝑁∙∙i∙
q$)  can be thought of as the number of heads obtained from tossing a 

coin independently for each focus of each experiment in the entire dataset (excluding the 𝑓-th 

focus of the 𝑒-th experiment), where the probability of getting a head for the 𝑓′-th activated 

voxel of the 𝑒′-th experiment is equal to  ∑ 𝜙$y)yijj∈𝝉d� . Thus, the expectation and variance of 

𝑁∙∙i∙
q$)is given by 

 

𝐸[a𝑁∙∙i∙
q$)b = � � 𝜙$y)yij

j∈𝝉d�$��$,)y�)

, 

𝑉𝑎𝑟[a𝑁∙∙i∙
q$)b = � �� 𝜙$y)yij

j∈𝝉d�

��1 − � 𝜙$y)yij
j∈𝝉d�

� .
$��$,)y�)

 

 

(15) 

 

By using the same argument for the remaining terms of Eq. (14), we can evaluate the update 

equation for 𝜙$)ij given the current estimate of 𝜙. 

To summarize, the CVB algorithm proceeds by iterating Eq. (14) until convergence. 

Notice that under CVB inference, the posterior 𝜙 is estimated without using the point 

estimates of the model parameters 𝜃 and 𝛽 (unlike the EM algorithm; see Supplemental 

Method S3). Given the final estimate of posterior distribution 𝜙, the parameters 𝜃 and 𝛽 can 

be estimated by the posterior means (Teh et al. 2006): 

 

𝜃ji ∝ 𝛼 +��𝜙$)ij

cd

)ef

g

$ef

	 (16) 
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𝛽i� ∝ 𝜂 +���𝜙$)ij
j∈𝝉d

cd

)ef

g

$ef

𝕝a𝑣$) = 𝑣b, (17) 

 

where 𝕝(𝑣$) = 𝑣) equals to one if the activation focus 𝑣$)  corresponds to location 𝑣  in 

MNI152 space, and zero otherwise. 

 

2.3 (S3) Theoretical differences between CVB with Standard Variational Bayes (SVB) 

and EM algorithm 

The CVB algorithm is theoretically better than standard variational Bayes (SVB) 

inference (Teh et al., 2006). As explained in the previous supplemental, CVB algorithm 

constructs a lower bound to the data log likelihood with respect to the latent variables (𝑪, 𝑻). 

On the other hand, the SVB algorithm constructs a lower bound with respect to both latent 

variables (𝑪, 𝑻) and model parameters (𝜃, 𝛽). Consequently, CVB provides a tighter lower 

bound to the data log likelihood: 

 

log𝑝(𝒗	|	𝛼, 𝜂, 𝝉) 

≥ 𝐸[(𝑪,𝑻)(log𝑝(𝒗, 𝑪, 𝑻	|	𝛼, 𝜂, 𝝉)) − 𝐸[(𝑪,𝑻)(log𝑞(𝑪, 𝑻)) 

≥ 𝐸[(𝑪,𝑻)[(�,�)(log𝑝(𝒗, 𝑪, 𝑻, 𝜃, 𝛽	|	𝛼, 𝜂, 𝝉))	−	𝐸[(�,�)(log𝑞(𝜃, 𝛽)) 	

− 𝐸[(𝑪,𝑻)(log𝑞(𝑪, 𝑻)) 

  

(18) 

 
(19) 

 

where the inequality (Eq. (18)) is the same as CVB Eq. (1) and the second inequality (Eq. 

(19)) corresponds to SVB.  

One can also draw parallels between the CVB (Supplemental Method S2) and EM 

(Yeo et al., 2015) algorithms for the author-topic model. Both algorithms iterate between 

estimating the posterior distribution of the latent variables (𝑪, 𝑻) and using the posterior 

distribution to update the model parameters estimates (𝜃, 𝛽). However, the EM algorithm 

uses point estimates of the model parameters to update the posterior distribution of (𝑪, 𝑻). In 

contrast, the CVB algorithm avoids doing so (Eq. (14)) and might therefore produce better 

estimates of the parameters (Ngo et al. 2016).  

In practice, we find the CVB algorithm to be less sensitive than the EM algorithm to 

the initialization of the hyperparameters 𝛼 and 𝜂. This is not an issue for a big dataset (e.g., 

BrainMap; Yeo et al., 2015) because the data will overwhelm the priors. However, this issue 

is important for small datasets like those utilized in this work. For the CVB algorithm, the 
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hyperparameters 𝛼 and 𝜂 were set to 100 and 0.01 respectively across all of our experiments. 

Perturbing 𝛼 and 𝜂  by two orders of magnitude did not significantly change the model 

parameters estimated by CVB algorithm, suggesting its robustness. This was not the case for 

the EM algorithm. 

 

2.4 (S4) Estimating Number of Components using Bayesian Information Criterion 

(BIC) 

Bayesian Information Criterion (BIC) is commonly used for model selection in 

machine learning (Schwarz, 1978). BIC favors models that best fit the data, while also 

penalizing models with more parameters. The BIC for the author-topic model is given by: 

 

𝐵𝐼𝐶 = log𝑝(𝒗	|	𝜃, 𝛽, 𝝉) −
1
2
a𝑘� + 𝑘�b log|𝒗|	 (20) 

 =�log
1
|𝝉$|

���𝛽i�dp𝜃ji
j∈𝝉d

r

ief

cd

)ef

g

$ef

−
1
2
a𝑘� + 𝑘�b log�|𝒗$|

g

$ef

 (21) 

 

where the first term is the log likelihood of the activation foci 𝒗 given the model parameters 

estimates 𝜃  and 𝛽, and the second term is the penalty based on the number of model 

parameters. |𝒗𝒆| and |𝝉𝒆| are the number of foci and tasks employed in the 𝑒-th experiment. 

𝑘� and 𝑘� are the number of free model parameters. 𝑘� is the number of free parameters in 

the 𝑀× 𝐾 matrix 𝜃, which is equal to 𝑀× (𝐾 − 1) since each row sums to one. 𝑘� is the 

approximated number of independent elements in the 𝐾 × 𝑉 matrix 𝛽. Each row of 𝛽 can be 

interpreted as a spatially smoothed brain image (see Supplemental Method S5). Therefore we 

approximated the number of independent elements in each row of 𝛽 by the number of 

resolution elements (resels) in the corresponding brain image (Worsley et al. 1992) using 

AFNI (Cox 1996). 

Models with a higher number of components 𝐾 fit the data better, resulting in a higher 

data log likelihood (first term of Eq. (20)). On the other hand, a higher 𝐾 also increases the 

number of free parameters a𝑘� + 𝑘�b, which results in a higher penalty (second term of Eq. 

(20)). A higher BIC values indicates a better model. 
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2.5 (S5) Implementation Details 

The model’s hyperparameters were set to be 𝛼 = 100  and 𝜂 = 0.01  across all 

experiments. Perturbing 𝛼 and 𝜂 by two orders of magnitude did not significantly change the 

results. The posterior distribution 𝜙 was randomly initialized. The CVB algorithm then 

updated the posterior distribution 𝜙 (Eq. (14)) until convergence. Given the estimate of 𝜙, 

CVB algorithm then computed the model parameters 𝜃 and 𝛽 (Eq. (16) and Eq. (17)). For a 

given number of components 𝐾, the procedure was repeated with 1000 random initializations 

resulting in 1000 estimates. The estimate resulting in the maximum lower bound of the data 

log likelihood (Eq. (1)) was taken as the final estimate. 

We repeated the procedure with for different number of cognitive components 𝐾. BIC 

was computed for each value of 𝐾 (Supplemental Method S4). Higher BIC implied better 

model parameters estimates. The model parameters with the highest BIC were presented in 

the Results and Discussion sections. 

 

2.6 (S6) Approximation of Pr(co-activation pattern | task) 

For the co-activation analysis of IFJ, each experiment was treated as its own unique 

task. To help interpret the co-activation pattern in terms of BrainMap task categories (also 

known as paradigm classes), we estimated the probability of the 𝑐-th co-activation pattern 

being utilized by the 𝑡-th task  posthoc: 

 

Pr(𝑐𝑜 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝑐	| 𝑡𝑎𝑠𝑘	𝑡) 	∝ 	�
𝜃$i𝕝(𝑡 ∈ 𝝉$)

|𝝉$|

g

$ef

, 
 

(22) 

 

where 𝜃$i was the estimated probability that the 𝑒-th experiment would recruit the 𝑐-th co-

activation pattern, 𝝉$  was the set of tasks utilized in the 𝑒-th experiment, and 𝕝(𝑡 ∈ 𝝉$) is an 

indicator function that was equal to 1 if the 𝑡-th task was one of the collection of tasks 𝝉$  

utilized by the 𝑒-th experiment and 0 otherwise. Eq. (22) can be interpreted as weighted 

average of 𝜃$i across all experiments utilizing task 𝑡 with the weight being smaller if an 

experiment utilizes many tasks. For example, if the 3rd experiment utilized “n-back” and 

“Stroop” tasks, the probability contributed by this experiment to the computation of the 

probability of “n-back” recruiting co-activation pattern C1 (Pr(𝑐𝑜 − 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	𝐶1	| "𝑛 −

𝑏𝑎𝑐𝑘")) would be the probability of the experiment recruiting co-activation pattern C1 (i.e., 

𝜃§f), divided by the number of tasks, which is two. 
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2.7 (S7) Self-generated thought studies 

2.7.1 Summary tables of self-generated thought studies 

Autobiographical memory 

Author 
Addis, Moscovitch, Crawley, & McAndrews (2004) 
Andreasen et al. (1995) 
Denkova, Botzung, & Manning (2006) 
Denkova, Botzung, Scheiber, & Manning (2006) 
Fink et al. (1996) 
Gilboa, Winocur, Grady, Hevenor, & Moscovitch (2004) 
Graham, Lee, Brett, & Patterson (2003) 
Greenberg et al. (2005) 
Levine et al. (2004) 
Maddock, Garrett, & Buonocore (2001) 
Maguire & Frith (2003b) 
ibid. 
Maguire & Mummery (1999) 
Maguire, Mummery, & Buchel (2000) 
Markowitsch et al. (2000) 
Piefke, Weiss, Zilles, Markowitsch, & Fink (2003) 
Rekkas & Constable (2005) 
Tsukiura et al. (2003) 
Vandekerckhove, Markowitsch, Mertens, & Woermann (2005) 
Viard et al. (2007) 

N 
14 
13 
12 
10 
7 
9 
24 
11 
5 
8 
12 
12 
8 
6 
8 
20 
12 
9 
16 
12 

(Reproduced from Spreng et al., 2009)  
 
Navigation 

Author 
Avila et al. (2006) 
Ghaem et al. (1997) 
Hartley, Maguire, Spiers, & Burgess (2003) 
Iaria, Chen, Guariglia, Ptito, & Petrides (2007) 
Jordan, Schadow, Wuestenberg, Heinze, & Jancke (2004) 
Kumaran & Maguire (2005) 
Maguire, Frackowiak, & Frith (1997) 
Maguire et al. (1998) 
Mayes, Montaldi, Spencer, & Roberts (2004) 
Mellet et al. (2002) 
Pine et al. (2002) 
Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch (2004) 
Spiers & Maguire (2006a) 

N 
12 
5 
16 
9 
8 
18 
11 
10 
9 
6 
20 
10 
20 

 (Reproduced from Spreng et al., 2009)  
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Task Deactivation 

Author 
Andreasen et al. (1995) 
Binder et al. (1999) 
Christoff, Ream, & Gabrieli (2004) 
D'Argembeau et al. (2005) 
Fransson (2006) 
Gould, Brown, Owen, Bullmore, & Howard (2006) 
Greicius, Srivastava, Reiss, & Menon (2004) 
ibid. 
ibid. 
Kennedy, Redcay, & Courchesne (2006) 
Mason et al. (2007) 
Mazoyer et al. (2001) 
McGuire et al. (1996) 
ibid. 
McKiernan, Kaufman, Kucera-Thompson, & Binder (2003) 
Persson, Lustig, Nelson, & Reuter-Lorenz (2007) 
Raichle et al. (2001) 
ibid. 
Shulman et al. (1997) 
Wicker, Ruby, Royet, & Fonlupt (2003) 

N 
13 
30 
12 
12 
14 
24 
14 
14 
13 
14 
19 
63 
5 
6 
30 
60 
19 
19 
132 
42 

 (Reproduced from Spreng et al., 2009)  
 
Story-based Theory of Mind 

Author 
Aichorn et al. (2009) 
Berthoz et al. (2002a) 
Ferstl & von Cramon (2002) 
Fletcher et al. (1995) 
Gallagher et al. (2000) 
Gobbini et al. (2007) 
Jenkins & Mitchell (2010) 
Kobayashi et al. (2006) 
ibid. 
Mitchell (2008b) 
Nieminen-von Wendt et al. (2003) 
Perner et al. (2006) 
Saxe & Kanwisher (2003) 
Saxe & Powell (2006) 
Saxe et al. (2006b) 
Saxe & Wexler (2005) 
Spengler et al. (2009) 
Vogeley et al. (2001) 
Young et al. (2007) 
ibid. 

N 
21 
12 
9 
6 
6 
12 
15 
16 
16 
20 
8 
19 
25 
12 
12 
12 
18 
8 
10 
17 

 (Reproduced from Mar et al., 2011)  
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Nonstory-based Theory of Mind 

Author 
Bahneman et al. (2010) 
Baron-Cohen et al. (1999) 
Bhatt & Camerer (2005) 
Blakemore et al. (2003) 
Brune et al. (2008) 
Brunet et al. (2000) 
Brunet et al. (2003) 
Castelli et al. (2000) 
Ciaramidaro et al. (2007) 
Decety et al. (2004) 
Elliott et al. (2006) 
Fukui et al. (2006) 
Gallagher & Frith (2004) 
Gallagher et al. (2000) 
Gallagher et al. (2002) 
German et al. (2004) 
Gilbert et al. (2007) 
Grèzes et al. (2004a) 
Grèzes et al. (2004b) 
Hooker et al. (2008) 
Kana et al. (2009) 
Kircher et al. (2009) 
Krach et al. (2009) 
Lombardo et al. (2010) 
Malhi et al. (2008) 
Marjoram et al. (2006) 
Mitchell et al. (2005a) 
Ochsner et al. (2005) 
Platek et al. (2004) 
Rabin et al. (2010) 
Rilling et al. (2004) 
Rilling et al. (2008) 
Russell et al. (2000) 
Samson et al. (2008) 
Sommer et al. (2007) 
Spiers & Maguire (2006) 
Spreng & Grady (2010) 
Sripada et al. (2009) 
Vanderwal et al. (2008) 
Vollm et al. (2006) 
Walter et al. (2004) 
ibid. 
Wolf et al. (2010) 

N 
25 
12 
16 
10 
13 
8 
8 
6 
12 
12 
14 
16 
12 
6 
9 
16 
16 
6 
11 
20 
12 
12 
12 
33 
20 
13 
18 
16 
5 
20 
19 
20 
7 
17 
16 
20 
16 
26 
17 
13 
13 
12 
18 

 (Reproduced from Mar et al., 2011)  
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Narrative Comprehension 

Author 
Crinion & Price (2005) 
Crinion et al. (2003) 
ibid. 
Dick et al. (2009) 
Ferstl & von Cramon (2001) 
Giraud et al. (2000) 
Kansaku et al. (2000) 
ibid. 
Kuperberg et al. (2006) 
Lindenberg & Scheef (2007) 
Maguire et al. (1999) 
Miura et al. (2005) 
Papathanassiou et al. (2000) 
Perani et al. (1996) 
Perani et al. (1998) 
ibid. 
Robertson et al. (2000) 
Siebörger et al. (2007) 
Tzourio et al. (1998) 
ibid. 

N 
18 
11 
6 
24 
12 
6 
22 
25 
15 
19 
13 
30 
8 
9 
9 
12 
8 
14 
10 
5 

(Reproduced from Mar et al., 2011)  
 

Moral Cognition 

Author 
Avram et al. (2013) 
Bahnemann et al. (2010) 
Borg et al. (2006) 
Borg et al. (2011) 
Chiong et al. (2013) 
FeldmannHall et al. (2012) 
FeldmannHall et al. (2013) 
Harada et al. (2009) 
Harenski et al. (2008) 
Harrison et al. (2008) 
Hayashi et al. (2010) 
Heekeren et al. (2003) 
Heekeren et al. (2005) 
Moll et al. (2001) 
Moll et al. (2002a) 
Parkinson et al. (2012) 
Prehn et al. (2008) 
Reniers et al. (2012) 
Schleim et al. (2010) 
Sinke et al. (2010) 
Sommer et al. (2010) 

N 
16 
25 
24 
26 
16 
14 
35 
18 
28 
22 
12 
8 
12 
10 
7 
38 
23 
24 
40 
14 
12 
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Takahashi et al. (2008) 
Akitsuki et al. (2009) 
Basile et al. (2011) 
Berhotz et al. (2002) 
Borg et al. (2008) 
Decety et al. (2011) 
Finger et al. (2006) 
Harenski et al. (2006) 
Harenski et al. (2010) 
ImmordinoYang et al. (2009) 
Kedia et al. (2008) 
Luo et al. (2006) 
Mercadillo et al. (2011) 
Michl et al. (2012) 
Moll et al. (2002b) 
Moll et al. (2005) 
Robertson et al. (2007) 
Takahashi et al. (2004) 
Wagner et al. (2011) 

15 
26 
22 
12 
15 
22 
16 
30 
14 
13 
35 
20 
24 
14 
7 
13 
16 
19 
15 

(Reproduced from Mar et al., 2011)  
 
2.7.2 References of self-generated thought studies 

Autobiographical memory 
Addis DR, Moscovitch M, Crawley AP, McAndrews MP. 2004. Recollective qualities 

modulate hippocampal activation during autobiographical memory retrieval. 
Hippocampus. 14:752–762. 

Andreasen NC, O'Leary DS, Cizadlo T, Arndt S, Rezai K, Watkins GL. 1995. Remembering 
the past: Two facets of episodic memory explored with positron emission tomography. 
American Journal of Psychiatry. 152:1576–1585. 

Denkova E, Botzung A, Manning L. 2006. Neural correlates of remembering/knowing 
famous people: An event-related fMRI study. Neuropsychologia. 44:2783–2791. 

Denkova E, Botzung A, Scheiber C, Manning L. 2006. Implicit emotion during recollection 
of past events: A nonverbal fMRI study. Brain Research. 1078:143–150. 

Fink GR, Markowitsch HJ, Reinkemeier M, Bruckbauer T, Kessler J, Heiss WD. 1996. 
Cerebral representation of one's own past: Neural networks involved in autobiographical 
memory. Journal of Neuroscience. 16:4275–4282. 

Gilboa A, Winocur G, Grady CL, Hevenor SJ, Moscovitch M. 2004. Remembering our past: 
Functional neuroanatomy of recollection of recent and very remote personal events. 
Cerebral Cortex. 14:1214–1225. 

Graham KS, Lee ACH, Brett M, Patterson K. 2003. The neural basis of autobiographical and 
semantic memory: New evidence from three PET studies. Cognitive, Affective, 
Behavioral Neuroscience. 3:234–254. 

Greenberg DL, Rice HJ, Cooper JJ, Cabeza R, Rubin DC, LaBar KS. 2005. Co-activation of 
the amygdala, hippocampus and inferior frontal gyrus during autobiographical memory 
retrieval. Neuropsychologia. 43:659–674. 

Levine B, Turner GR, Tisserand D, Hevenor SJ, Graham SJ, McIntosh AR. 2004. The 
functional neuroanatomy of episodic and semantic autobiographical remembering: A 
prospective functional MRI study. Journal of Cognitive Neuroscience. 16:1633–1646. 
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Maddock RF, Garrett AS, Buonocore MH. 2001. Remembering familiar people: The 
posterior cingulate cortex and autobiographical memory retrieval. Neuroscience. 
104:667–676. 

Maguire EA, Frith CD. 2003. Aging affects the engagement of the hippocampus during 
autobiographical memory retrieval. Brain. 126:1511–1523. 
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ibid. 
Fernández-Corcuera et al. (2013) 
Newman et al. (2011) 
Mickley et al. (2009) 
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Gutchess et al. (2012) 
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10 
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60 
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16 
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32 
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22 
12 
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