000863649 001__ 863649
000863649 005__ 20240619091249.0
000863649 0247_ $$2doi$$a10.1038/s41377-019-0144-z
000863649 0247_ $$2ISSN$$a2047-7538
000863649 0247_ $$2ISSN$$a2095-5545
000863649 0247_ $$2Handle$$a2128/22454
000863649 0247_ $$2altmetric$$aaltmetric:57820759
000863649 0247_ $$2pmid$$apmid:30937165
000863649 0247_ $$2WOS$$aWOS:000463971600001
000863649 037__ $$aFZJ-2019-03658
000863649 082__ $$a530
000863649 1001_ $$0P:(DE-HGF)0$$aZhang, Weiqiang$$b0
000863649 245__ $$aAtomic switches of metallic point contacts by plasmonic heating
000863649 260__ $$aLondon$$bNature Publishing Group$$c2019
000863649 3367_ $$2DRIVER$$aarticle
000863649 3367_ $$2DataCite$$aOutput Types/Journal article
000863649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582035682_1128
000863649 3367_ $$2BibTeX$$aARTICLE
000863649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863649 3367_ $$00$$2EndNote$$aJournal Article
000863649 520__ $$aElectronic switches with nanoscale dimensions satisfy an urgent demand for further device miniaturization. A recent heavily investigated approach for nanoswitches is the use of molecular junctions that employ photochromic molecules that toggle between two distinct isoforms. In contrast to the reports on this approach, we demonstrate that the conductance switch behavior can be realized with only a bare metallic contact without any molecules under light illumination. We demonstrate that the conductance of bare metallic quantum contacts can be reversibly switched over eight orders of magnitude, which substantially exceeds the performance of molecular switches. After the switch process, the gap size between two electrodes can be precisely adjusted with subangstrom accuracy by controlling the light intensity or polarization. Supported by simulations, we reveal a more general and straightforward mechanism for nanoswitching behavior, i.e., atomic switches can be realized by the expansion of nanoelectrodes due to plasmonic heating.
000863649 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000863649 588__ $$aDataset connected to CrossRef
000863649 7001_ $$0P:(DE-HGF)0$$aLiu, Hongshuang$$b1
000863649 7001_ $$0P:(DE-HGF)0$$aLu, Jinsheng$$b2
000863649 7001_ $$0P:(DE-HGF)0$$aNi, Lifa$$b3
000863649 7001_ $$0P:(DE-HGF)0$$aLiu, Haitao$$b4
000863649 7001_ $$0P:(DE-HGF)0$$aLi, Qiang$$b5
000863649 7001_ $$0P:(DE-HGF)0$$aQiu, Min$$b6
000863649 7001_ $$0P:(DE-HGF)0$$aXu, Bingqian$$b7$$eCorresponding author
000863649 7001_ $$0P:(DE-HGF)0$$aLee, Takhee$$b8$$eCorresponding author
000863649 7001_ $$0P:(DE-HGF)0$$aZhao, Zhikai$$b9
000863649 7001_ $$0P:(DE-HGF)0$$aWang, Xianghui$$b10
000863649 7001_ $$0P:(DE-HGF)0$$aWang, Maoning$$b11
000863649 7001_ $$0P:(DE-HGF)0$$aWang, Tao$$b12
000863649 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b13
000863649 7001_ $$0P:(DE-Juel1)128707$$aMayer, Dirk$$b14
000863649 7001_ $$0P:(DE-HGF)0$$aHwang, Wang-Taek$$b15
000863649 7001_ $$00000-0002-5632-6355$$aXiang, Dong$$b16$$eCorresponding author
000863649 773__ $$0PERI:(DE-600)2662628-7$$a10.1038/s41377-019-0144-z$$gVol. 8, no. 1, p. 34$$n1$$p34$$tLight$$v8$$x2047-7538$$y2019
000863649 8564_ $$uhttps://juser.fz-juelich.de/record/863649/files/s41377-019-0144-z.pdf$$yOpenAccess
000863649 8564_ $$uhttps://juser.fz-juelich.de/record/863649/files/s41377-019-0144-z.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863649 909CO $$ooai:juser.fz-juelich.de:863649$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000863649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b13$$kFZJ
000863649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128707$$aForschungszentrum Jülich$$b14$$kFZJ
000863649 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000863649 9141_ $$y2019
000863649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863649 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000863649 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLIGHT-SCI APPL : 2017
000863649 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bLIGHT-SCI APPL : 2017
000863649 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863649 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863649 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863649 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000863649 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863649 920__ $$lyes
000863649 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000863649 9801_ $$aFullTexts
000863649 980__ $$ajournal
000863649 980__ $$aVDB
000863649 980__ $$aI:(DE-Juel1)ICS-8-20110106
000863649 980__ $$aUNRESTRICTED
000863649 981__ $$aI:(DE-Juel1)IBI-3-20200312