001     863649
005     20240619091249.0
024 7 _ |a 10.1038/s41377-019-0144-z
|2 doi
024 7 _ |a 2047-7538
|2 ISSN
024 7 _ |a 2095-5545
|2 ISSN
024 7 _ |a 2128/22454
|2 Handle
024 7 _ |a altmetric:57820759
|2 altmetric
024 7 _ |a pmid:30937165
|2 pmid
024 7 _ |a WOS:000463971600001
|2 WOS
037 _ _ |a FZJ-2019-03658
082 _ _ |a 530
100 1 _ |a Zhang, Weiqiang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Atomic switches of metallic point contacts by plasmonic heating
260 _ _ |a London
|c 2019
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582035682_1128
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electronic switches with nanoscale dimensions satisfy an urgent demand for further device miniaturization. A recent heavily investigated approach for nanoswitches is the use of molecular junctions that employ photochromic molecules that toggle between two distinct isoforms. In contrast to the reports on this approach, we demonstrate that the conductance switch behavior can be realized with only a bare metallic contact without any molecules under light illumination. We demonstrate that the conductance of bare metallic quantum contacts can be reversibly switched over eight orders of magnitude, which substantially exceeds the performance of molecular switches. After the switch process, the gap size between two electrodes can be precisely adjusted with subangstrom accuracy by controlling the light intensity or polarization. Supported by simulations, we reveal a more general and straightforward mechanism for nanoswitching behavior, i.e., atomic switches can be realized by the expansion of nanoelectrodes due to plasmonic heating.
536 _ _ |a 523 - Controlling Configuration-Based Phenomena (POF3-523)
|0 G:(DE-HGF)POF3-523
|c POF3-523
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Liu, Hongshuang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Jinsheng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ni, Lifa
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liu, Haitao
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Li, Qiang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Qiu, Min
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Xu, Bingqian
|0 P:(DE-HGF)0
|b 7
|e Corresponding author
700 1 _ |a Lee, Takhee
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
700 1 _ |a Zhao, Zhikai
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Wang, Xianghui
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Wang, Maoning
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wang, Tao
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 13
700 1 _ |a Mayer, Dirk
|0 P:(DE-Juel1)128707
|b 14
700 1 _ |a Hwang, Wang-Taek
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Xiang, Dong
|0 0000-0002-5632-6355
|b 16
|e Corresponding author
773 _ _ |a 10.1038/s41377-019-0144-z
|g Vol. 8, no. 1, p. 34
|0 PERI:(DE-600)2662628-7
|n 1
|p 34
|t Light
|v 8
|y 2019
|x 2047-7538
856 4 _ |u https://juser.fz-juelich.de/record/863649/files/s41377-019-0144-z.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/863649/files/s41377-019-0144-z.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:863649
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)128707
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|2 G:(DE-HGF)POF3-500
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LIGHT-SCI APPL : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b LIGHT-SCI APPL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21