Home > Publications database > Multiscale water dynamics in model Anion Exchange Membranes for Alkaline Membrane Fuel Cells > print |
001 | 863683 | ||
005 | 20210130002254.0 | ||
024 | 7 | _ | |a 10.1016/j.memsci.2019.05.079 |2 doi |
024 | 7 | _ | |a 0376-7388 |2 ISSN |
024 | 7 | _ | |a 1873-3123 |2 ISSN |
024 | 7 | _ | |a WOS:000471097100025 |2 WOS |
037 | _ | _ | |a FZJ-2019-03689 |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Melchior, Jan-Patrick |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Multiscale water dynamics in model Anion Exchange Membranes for Alkaline Membrane Fuel Cells |
260 | _ | _ | |a New York, NY [u.a.] |c 2019 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1564389069_13085 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Ionic conductivity and water transport through alkaline Anion Exchange Membranes (AEM) are key properties for application in Alkaline Membrane Fuel Cells (AMFC), Redox-Flow-Cells, or Alkaline Membrane Electrolysis. AEMs consist of a polymer domain with cationic side groups and a pervading water domain through which anions are conducted. In this study, Quasielastic Neutron Scattering (QENS) is employed to study water rotational and diffusive dynamics in the hydroxide form of a model AEM (Fumatech FAA-3) at water contents relevant for application. Two distinct diffusion time- and length-scales are accessed: “Localized” diffusion at the lower Ångstrom/tens of picosecond scale and “extended” diffusion at the higher Ångstrom/hundreds of picosecond scale. The localized diffusion length scale is smaller than the membrane's water domain thickness and its diffusion coefficients remain close to the value of bulk water even at decreasing water content. Extended diffusion approaches the thickness of the water domain and its diffusion coefficients decrease strongly with decreasing water content. A master curve links water domain thickness to the extended water diffusion coefficients for the alkaline hydrocarbon model AEM and literature data on acidic per-fluorinated Proton Exchange Membranes. |
536 | _ | _ | |0 G:(DE-HGF)POF3-6G15 |f POF III |x 0 |c POF3-6G15 |a 6G15 - FRM II / MLZ (POF3-6G15) |
536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623) |0 G:(DE-HGF)POF3-6G4 |c POF3-623 |f POF III |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 2 | 7 | |a Soft Condensed Matter |0 V:(DE-MLZ)SciArea-210 |2 V:(DE-HGF) |x 0 |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e SPHERES: Backscattering spectrometer |f NL6S |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)SPHERES-20140101 |5 EXP:(DE-MLZ)SPHERES-20140101 |6 EXP:(DE-MLZ)NL6S-20140101 |x 0 |
693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e TOFTOF: Cold neutron time-of-flight spectrometer |f NL2au |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)TOF-TOF-20140101 |5 EXP:(DE-MLZ)TOF-TOF-20140101 |6 EXP:(DE-MLZ)NL2au-20140101 |x 1 |
700 | 1 | _ | |a Lohstroh, Wiebke |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Zamponi, Michaela |0 P:(DE-Juel1)131056 |b 2 |u fzj |
700 | 1 | _ | |a Jalarvo, Niina H. |0 P:(DE-Juel1)143752 |b 3 |u fzj |
773 | _ | _ | |a 10.1016/j.memsci.2019.05.079 |g Vol. 586, p. 240 - 247 |0 PERI:(DE-600)1491419-0 |p 240 - 247 |t Journal of membrane science |v 586 |y 2019 |x 0376-7388 |
909 | C | O | |o oai:juser.fz-juelich.de:863683 |p VDB:MLZ |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131056 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)143752 |
913 | 1 | _ | |a DE-HGF |9 G:(DE-HGF)POF3-6G15 |x 0 |4 G:(DE-HGF)POF |v FRM II / MLZ |1 G:(DE-HGF)POF3-6G0 |0 G:(DE-HGF)POF3-6G15 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-600 |b Forschungsbereich Materie |l Großgeräte: Materie |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF3-620 |0 G:(DE-HGF)POF3-623 |2 G:(DE-HGF)POF3-600 |v Facility topic: Neutrons for Research on Condensed Matter |9 G:(DE-HGF)POF3-6G4 |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J MEMBRANE SCI : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J MEMBRANE SCI : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JCNS-1-20110106 |k Neutronenstreuung ; JCNS-1 |l Neutronenstreuung |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
980 | _ | _ | |a I:(DE-Juel1)JCNS-1-20110106 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|