000863693 001__ 863693
000863693 005__ 20210130002257.0
000863693 0247_ $$2Handle$$a2128/22467
000863693 037__ $$aFZJ-2019-03698
000863693 041__ $$aEnglish
000863693 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj
000863693 1112_ $$a19th International Conference on Computational and Mathematical Methods in Science and Engineering$$cCosta Ballena, Cádiz$$d2019-06-30 - 2019-07-06$$gCMMSE 2019$$wSpain
000863693 245__ $$aMixed interior transmission eigenvalues
000863693 260__ $$c2019
000863693 3367_ $$033$$2EndNote$$aConference Paper
000863693 3367_ $$2DataCite$$aOther
000863693 3367_ $$2BibTeX$$aINPROCEEDINGS
000863693 3367_ $$2DRIVER$$aconferenceObject
000863693 3367_ $$2ORCID$$aLECTURE_SPEECH
000863693 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1562845193_29359$$xAfter Call
000863693 520__ $$aIn this talk, a new scattering model for the interior transmission eigenvalue problem with mixed boundary conditions is described in two dimensions. This new eigenvalue problem is challenging due to the fact that it is neither elliptic nor self-adjoint. The problem at hand is reformulated with boundary integral equations leading to a system of boundary integral equations. After discretizing it, a non-linear eigenvalue problem is obtained. An efficient algorithm for solving it is demonstrated in order to find such interior transmission eigenvalues. Additionally, some distribution properties of those eigenvalues are given. Finally, numerical results are provided for a variety of two-dimensional objects.
000863693 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000863693 8564_ $$uhttps://juser.fz-juelich.de/record/863693/files/slides.pdf$$yOpenAccess
000863693 8564_ $$uhttps://juser.fz-juelich.de/record/863693/files/slides.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863693 909CO $$ooai:juser.fz-juelich.de:863693$$pdriver$$pVDB$$popen_access$$popenaire
000863693 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000863693 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000863693 9141_ $$y2019
000863693 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863693 920__ $$lno
000863693 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000863693 980__ $$aconf
000863693 980__ $$aVDB
000863693 980__ $$aUNRESTRICTED
000863693 980__ $$aI:(DE-Juel1)JSC-20090406
000863693 9801_ $$aFullTexts