

MIXED INTERIOR TRANSMISSION EIGENVALUES

joint work with Jijun Liu

CMMSE 2019 (MS 23) | July 2, 2019 | Andreas Kleefeld | Jülich Supercomputing Centre, Germany

TABLE OF CONTENTS

Part 1: Introduction & motivation

Part 2: Some theory

Part 3: Boundary integral equations

Part 4: Numerical results

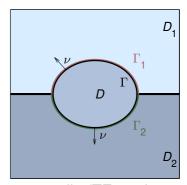
Part 5: Summary & outlook

Part I: Introduction & motivation

INTRODUCTION & MOTIVATION

A general physical configuration

- Obstacle *D* is located in perfect conducting substrate *D*₂ with boundary Γ₂ ⊂ Γ.
- Remaining part of boundary Γ₁ = Γ \ Γ₂ contacts with surface of background dielectric medium D₁.
- We assume $\Gamma = \Gamma_1 \cup \Gamma_2$, $\Gamma_1 \neq \emptyset$, and $\Gamma_2 \neq \emptyset$.



 Scattering problem for isotropic inhomogeneous media (TE mode electromagnetic scattering) leads to . . .

INTRODUCTION & MOTIVATION

A general physical configuration

• ... (acoustic) interior transmission problem with mixed boundary condition:

$$\begin{cases} \Delta u + k^2 u = 0 \,, & x \in D \,, \\ \Delta v + k^2 n v = 0 \,, & x \in D \,, \\ u = v \,, & \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} \,, & x \in \Gamma_1 \,, \text{ (transmission condition)} \\ u = v = 0 \,, & x \in \Gamma_2 \,. \text{ (hom. Dirichlet condition)} \end{cases} \tag{1}$$

- Here, $n \neq 1$ is the real-valued index of refraction (constant).
- Find $k \neq 0$ and non-trivial (u, v) such that (1) is satisfied.
- Such k will be called mixed interior transmission eigenvalues (MITEs).

INTRODUCTION & MOTIVATION

Goal

- This is a non-standard eigenvalue problem.
- It is neither elliptic nor self-adjoint.
- How to solve this problem numerically?
- No results for the computation of MITEs have yet been reported.

Part II: Some theory

SOME THEORY

A short review

- The set of MITEs is at most discrete.
- Does not accumulate at zero.
- There exists an infinite number of real MITEs.
- lacktriangle Only accumulation point is ∞ .
- Nothing is known for complex-valued MITEs.

Part III: Boundary integral equations

Preliminaries

- Fundamental solution: $\Phi_k(x,y) = iH_0^{(1)}(k|x-y|)/4, x \neq y$.
- Single- and double-layer potentials over Γ given for $x \notin \Gamma$ by

$$\mathrm{SL}_{k}^{\Gamma} \left[\psi \right] \left(x \right) \;\; = \;\; \int_{\Gamma} \Phi_{k} (x, y) \, \psi (y) \, \mathrm{d} \boldsymbol{s} (y) \, , \\ \mathrm{DL}_{k}^{\Gamma} \left[\psi \right] \left(x \right) \;\; = \;\; \int_{\Gamma} \partial_{\nu (y)} \Phi_{k} (x, y) \, \psi (y) \, \mathrm{d} \boldsymbol{s} (y) \, .$$

Green's representation theorem:

$$u(x) = \operatorname{SL}_{k}^{\Gamma} \left[\partial_{\nu} u|_{\Gamma} \right](x) - \operatorname{DL}_{k}^{\Gamma} \left[u|_{\Gamma} \right](x), \qquad x \in D.$$

Preliminaries

Γ is disjoint union of Γ₁ and Γ₂. Hence,

$$u(x) = \operatorname{SL}_{k}^{\Gamma_{1}} [\partial_{\nu} u|_{\Gamma_{1}}](x) + \operatorname{SL}_{k}^{\Gamma_{2}} [\partial_{\nu} u|_{\Gamma_{2}}](x) - \operatorname{DL}_{k}^{\Gamma_{1}} [u|_{\Gamma_{1}}](x) - \operatorname{DL}_{k}^{\Gamma_{2}} [u|_{\Gamma_{2}}](x), \quad x \in D,$$
 (2)

$$v(x) = \operatorname{SL}_{k\sqrt{n}}^{\Gamma_{1}} [\partial_{\nu} v|_{\Gamma_{1}}](x) + \operatorname{SL}_{k\sqrt{n}}^{\Gamma_{2}} [\partial_{\nu} v|_{\Gamma_{2}}](x) - \operatorname{DL}_{k\sqrt{n}}^{\Gamma_{1}} [v|_{\Gamma_{1}}](x) - \operatorname{DL}_{k\sqrt{n}}^{\Gamma_{2}} [v|_{\Gamma_{2}}](x), \qquad x \in D.$$
(3)

• Using $u|_{\Gamma_2} = v|_{\Gamma_2} = 0$, equations (2) and (3) can be simplified to

$$u(x) = \operatorname{SL}_{k}^{\Gamma_{1}} \left[\partial_{\nu} u|_{\Gamma_{1}} \right](x) + \operatorname{SL}_{k}^{\Gamma_{2}} \left[\partial_{\nu} u|_{\Gamma_{2}} \right](x) - \operatorname{DL}_{k}^{\Gamma_{1}} \left[u|_{\Gamma_{1}} \right](x), \quad x \in D,$$
 (4)

$$v(x) = \operatorname{SL}_{k\sqrt{n}}^{\Gamma_1} \left[\partial_{\nu} v|_{\Gamma_1} \right](x) + \operatorname{SL}_{k\sqrt{n}}^{\Gamma_2} \left[\partial_{\nu} v|_{\Gamma_2} \right](x) - \operatorname{DL}_{k\sqrt{n}}^{\Gamma_1} \left[v|_{\Gamma_1} \right](x), \quad x \in D.$$
 (5)

Preliminaries

Boundary integral operators:

$$S_{k}^{\Gamma_{i} \to \Gamma_{j}} [\psi|_{\Gamma_{i}}] (x) = \int_{\Gamma_{i}} \Phi_{k}(x, y) \psi(y) \, \mathrm{d}s(y) \,, \quad x \in \Gamma_{j} \,,$$

$$K_{k}^{\Gamma_{i} \to \Gamma_{j}} [\psi|_{\Gamma_{i}}] (x) = \int_{\Gamma_{i}} \partial_{\nu_{i}(y)} \Phi_{k}(x, y) \psi(y) \, \mathrm{d}s(y) \,, \quad x \in \Gamma_{j} \,,$$

$$K_{k}^{\top \Gamma_{i} \to \Gamma_{j}} [\psi|_{\Gamma_{i}}] (x) = \int_{\Gamma_{i}} \partial_{\nu_{j}(x)} \Phi_{k}(x, y) \psi(y) \, \mathrm{d}s(y) \,, \quad x \in \Gamma_{j} \,,$$

$$T_{k}^{\Gamma_{i} \to \Gamma_{j}} [\psi|_{\Gamma_{i}}] (x) = \partial_{\nu_{j}(x)} \int_{\Gamma_{i}} \partial_{\nu_{i}(y)} \Phi_{k}(x, y) \psi(y) \, \mathrm{d}s(y) \,, \quad x \in \Gamma_{j} \,,$$

where $i, j \in \{1, 2\}$.

Derivation of first boundary integral equation

■ $D \ni x \to x \in \Gamma_1$ in (4) and (5) and jump relations:

$$u|_{\Gamma_1} = S_k^{\Gamma_1 \to \Gamma_1} \left[\partial_{\nu} u|_{\Gamma_1} \right] + S_k^{\Gamma_2 \to \Gamma_1} \left[\partial_{\nu} u|_{\Gamma_2} \right] - \left(K_k^{\Gamma_1 \to \Gamma_1} \left[u|_{\Gamma_1} \right] - \frac{1}{2} u|_{\Gamma_1} \right) , \qquad (6)$$

$$v|_{\Gamma_1} = S_{k\sqrt{n}}^{\Gamma_1 \to \Gamma_1} \left[\partial_{\nu} v|_{\Gamma_1} \right] + S_{k\sqrt{n}}^{\Gamma_2 \to \Gamma_1} \left[\partial_{\nu} v|_{\Gamma_2} \right] - \left(K_{k\sqrt{n}}^{\Gamma_1 \to \Gamma_1} \left[v|_{\Gamma_1} \right] - \frac{1}{2} v|_{\Gamma_1} \right). \tag{7}$$

■ Difference of (6) and (7), $u|_{\Gamma_1} = v|_{\Gamma_1}$ and $\partial_{\nu} u|_{\Gamma_1} = \partial_{\nu} v|_{\Gamma_1}$:

$$0 = \left(S_{k}^{\Gamma_{1} \to \Gamma_{1}} - S_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}}\right) \left[\partial_{\nu} u|_{\Gamma_{1}}\right] + S_{k}^{\Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} u|_{\Gamma_{2}}\right] - S_{k\sqrt{n}}^{\Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} v|_{\Gamma_{2}}\right] - \left(K_{k}^{\Gamma_{1} \to \Gamma_{1}} - K_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}}\right) \left[u|_{\Gamma_{1}}\right].$$
 (8)

Derivation of second boundary integral equation

■ $D \ni x \to x \in \Gamma_2$ in (4) and (5):

$$u|_{\Gamma_2} = S_k^{\Gamma_1 \to \Gamma_2} \left[\partial_{\nu} u|_{\Gamma_1} \right] + S_k^{\Gamma_2 \to \Gamma_2} \left[\partial_{\nu} u|_{\Gamma_2} \right] - K_k^{\Gamma_1 \to \Gamma_2} \left[u|_{\Gamma_1} \right] , \tag{9}$$

$$\mathbf{v}|_{\Gamma_2} = \mathbf{S}_{k\sqrt{n}}^{\Gamma_1 \to \Gamma_2} \left[\partial_{\nu} \mathbf{v}|_{\Gamma_1} \right] + \mathbf{S}_{k\sqrt{n}}^{\Gamma_2 \to \Gamma_2} \left[\partial_{\nu} \mathbf{v}|_{\Gamma_2} \right] - \mathbf{K}_{k\sqrt{n}}^{\Gamma_1 \to \Gamma_2} \left[\mathbf{v}|_{\Gamma_1} \right] . \tag{10}$$

■ Difference of (9) and (10), $u|_{\Gamma_2} = v|_{\Gamma_2} = 0$, $u|_{\Gamma_1} = v|_{\Gamma_1}$ and $\partial_{\nu} u|_{\Gamma_1} = \partial_{\nu} v|_{\Gamma_1}$:

$$0 = \left(S_{k}^{\Gamma_{1} \to \Gamma_{2}} - S_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}}\right) \left[\partial_{\nu} u|_{\Gamma_{1}}\right] + S_{k}^{\Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} u|_{\Gamma_{2}}\right] - S_{k\sqrt{n}}^{\Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} v|_{\Gamma_{2}}\right] - \left(K_{k}^{\Gamma_{1} \to \Gamma_{2}} - K_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}}\right) \left[u|_{\Gamma_{1}}\right].$$
 (11)

Derivation of third boundary integral equation

■ Normal derivative of (4) and (5), $D \ni x \to x \in \Gamma_1$, and jump relations:

$$\partial_{\nu} u|_{\Gamma_{1}} = K_{k}^{\top \Gamma_{1} \to \Gamma_{1}} \left[\partial_{\nu} u|_{\Gamma_{1}} \right] + \frac{1}{2} \partial_{\nu} u|_{\Gamma_{1}} + K_{k}^{\top \Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} u|_{\Gamma_{2}} \right] - T_{k}^{\Gamma_{1} \to \Gamma_{1}} \left[u|_{\Gamma_{1}} \right], \quad (12)$$

$$\partial_{\nu} \boldsymbol{v}|_{\Gamma_{1}} = K_{k\sqrt{n}}^{\top} {}^{\Gamma_{1} \to \Gamma_{1}} \left[\partial_{\nu} \boldsymbol{v}|_{\Gamma_{1}} \right] + \frac{1}{2} \partial_{\nu} \boldsymbol{v}|_{\Gamma_{1}} + K_{k\sqrt{n}}^{\top} {}^{\Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} \boldsymbol{v}|_{\Gamma_{2}} \right] - T_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}} \left[\boldsymbol{v}|_{\Gamma_{1}} \right]. (13)$$

■ Difference of (12) and (13), $u|_{\Gamma_1} = v|_{\Gamma_1}$ and $\partial_{\nu} u|_{\Gamma_1} = \partial_{\nu} v|_{\Gamma_1}$:

$$0 = \left(\mathbf{K}_{k}^{\top \Gamma_{1} \to \Gamma_{1}} - \mathbf{K}_{k\sqrt{n}}^{\top \Gamma_{1} \to \Gamma_{1}}\right) \left[\partial_{\nu} u|_{\Gamma_{1}}\right] + \mathbf{K}_{k}^{\top \Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} u|_{\Gamma_{2}}\right] - \mathbf{K}_{k\sqrt{n}}^{\top \Gamma_{2} \to \Gamma_{1}} \left[\partial_{\nu} v|_{\Gamma_{2}}\right] - \left(\mathbf{T}_{k}^{\Gamma_{1} \to \Gamma_{1}} - \mathbf{T}_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}}\right) \left[u|_{\Gamma_{1}}\right].$$

$$(14)$$

Derivation of fourth boundary integral equation

■ Normal derivative of (4) and (5), $D \ni x \to x \in \Gamma_2$, and jump relations:

$$\partial_{\nu} u|_{\Gamma_{2}} = K_{k}^{\top \Gamma_{1} \to \Gamma_{2}} \left[\partial_{\nu} u|_{\Gamma_{1}} \right] + K_{k}^{\top \Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} u|_{\Gamma_{2}} \right] + \frac{1}{2} \partial_{\nu} u|_{\Gamma_{2}} - T_{k}^{\Gamma_{1} \to \Gamma_{2}} \left[u|_{\Gamma_{1}} \right], \quad (15)$$

$$\partial_{\nu} \mathbf{v}|_{\Gamma_{2}} = \mathbf{K}_{k\sqrt{n}}^{\top} {}^{\Gamma_{1} \to \Gamma_{2}} \left[\partial_{\nu} \mathbf{v}|_{\Gamma_{1}} \right] + \mathbf{K}_{k\sqrt{n}}^{\top} {}^{\Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} \mathbf{v}|_{\Gamma_{2}} \right] + \frac{1}{2} \partial_{\nu} \mathbf{v}|_{\Gamma_{2}} - \mathbf{T}_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}} \left[\mathbf{v}|_{\Gamma_{1}} \right] . (16)$$

Equations (15) and (16) can be rewritten as

$$0 = K_k^{\mathsf{T}\mathsf{\Gamma}_1 \to \mathsf{\Gamma}_2} \left[\partial_{\nu} u |_{\mathsf{\Gamma}_1} \right] + K_k^{\mathsf{T}\mathsf{\Gamma}_2 \to \mathsf{\Gamma}_2} \left[\partial_{\nu} u |_{\mathsf{\Gamma}_2} \right] - T_k^{\mathsf{\Gamma}_1 \to \mathsf{\Gamma}_2} \left[u |_{\mathsf{\Gamma}_1} \right] - \frac{1}{2} \partial_{\nu} u |_{\mathsf{\Gamma}_2} , \qquad (17)$$

$$0 = \mathrm{K}_{k\sqrt{n}}^{\top \Gamma_1 \to \Gamma_2} \left[\partial_{\nu} \boldsymbol{v}|_{\Gamma_1} \right] + \mathrm{K}_{k\sqrt{n}}^{\top \Gamma_2 \to \Gamma_2} \left[\partial_{\nu} \boldsymbol{v}|_{\Gamma_2} \right] - \mathrm{T}_{k\sqrt{n}}^{\Gamma_1 \to \Gamma_2} \left[\boldsymbol{v}|_{\Gamma_1} \right] - \frac{1}{2} \partial_{\nu} \boldsymbol{v}|_{\Gamma_2} \,. \tag{18}$$

Derivation of fourth boundary integral equation

■ Difference of (17) and (18), $u|_{\Gamma_1} = v|_{\Gamma_1}$ and $\partial_{\nu} u|_{\Gamma_1} = \partial_{\nu} v|_{\Gamma_1}$:

$$0 = \left(\mathbf{K}_{k}^{\top \Gamma_{1} \to \Gamma_{2}} - \mathbf{K}_{k\sqrt{n}}^{\top \Gamma_{1} \to \Gamma_{2}}\right) \left[\partial_{\nu} u|_{\Gamma_{1}}\right] + \mathbf{K}_{k}^{\top \Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} u|_{\Gamma_{2}}\right]$$
$$- \mathbf{K}_{k\sqrt{n}}^{\top \Gamma_{2} \to \Gamma_{2}} \left[\partial_{\nu} v|_{\Gamma_{2}}\right] - \left(\mathbf{T}_{k}^{\Gamma_{1} \to \Gamma_{2}} - \mathbf{T}_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}}\right) \left[u|_{\Gamma_{1}}\right] - \frac{1}{2} \partial_{\nu} u|_{\Gamma_{2}}$$
$$+ \frac{1}{2} \partial_{\nu} v|_{\Gamma_{2}}. \tag{19}$$

 4×4 system of boundary integral equations

Four equations (8), (11), (14), and (19) can be written as

$$Z(k)g=0$$

with

$$Z(k) = \begin{pmatrix} s_{k}^{\Gamma_{1} \to \Gamma_{1}} - s_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}} & k_{k}^{\Gamma_{1} \to \Gamma_{1}} - k_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}} & s_{k}^{\Gamma_{2} \to \Gamma_{1}} & s_{k\sqrt{n}}^{\Gamma_{2} \to \Gamma_{1}} \\ s_{k}^{\Gamma_{1} \to \Gamma_{2}} - s_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}} & k_{k}^{\Gamma_{1} \to \Gamma_{2}} - k_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}} & s_{k}^{\Gamma_{2} \to \Gamma_{2}} & s_{k\sqrt{n}}^{\Gamma_{2} \to \Gamma_{2}} \\ k_{k}^{\top \Gamma_{1} \to \Gamma_{1}} - k_{k\sqrt{n}}^{\top \Gamma_{1} \to \Gamma_{1}} & T_{k}^{\Gamma_{1} \to \Gamma_{1}} - T_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{1}} & k_{k}^{\top \Gamma_{2} \to \Gamma_{1}} & k_{k\sqrt{n}}^{\top \Gamma_{2} \to \Gamma_{1}} \\ k_{k}^{\top \Gamma_{1} \to \Gamma_{2}} - k_{k}^{\top \Gamma_{1} \to \Gamma_{2}} & T_{k}^{\Gamma_{1} \to \Gamma_{2}} - T_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}} - T_{k\sqrt{n}}^{\Gamma_{1} \to \Gamma_{2}} - T_{k\sqrt{n}}^{\Gamma_{2} \to \Gamma_{2}} - \frac{1}{2} I & k_{k}^{\top \Gamma_{2} \to \Gamma_{2}} - \frac{1}{2} I \end{pmatrix}$$
 (20)

$$\mathbf{g} = (\alpha - \beta \quad \gamma - \delta)^{\mathsf{T}},$$

where we used the notation

$$\alpha = \partial_{\nu} \mathbf{u}|_{\Gamma_{1}}, \ \beta = \mathbf{u}|_{\Gamma_{1}}, \ \gamma = \partial_{\nu} \mathbf{u}|_{\Gamma_{2}}, \ \text{and} \ \delta = \partial_{\nu} \mathbf{v}|_{\Gamma_{2}}.$$
 (21)

Part IV: Numerical results

A short description

- Discretize the resulting boundary integral operator via boundary element collocation method.
- Curved boundary is approximated by lines.
- Collocation nodes are the midpoints having m collocation points in total.
- Unknown function is approximated by constant interpolation at each midpoint.
- Hence, we can regard (20) as non-linear eigenvalue problem of the form $\mathbf{Z}(k)\tilde{g} = 0$ with $\mathbf{Z}(k) \in \mathbb{C}^{m \times m}$ and \tilde{g} the discretized version of g given by (21).
- Solved with Beyn's algorithm (based on complex-valued contour integration of the resolvent).

Unit circle, n = 4

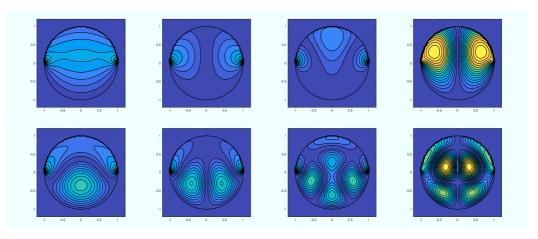


Figure: Absolute value of u (first row) and v (second row) for the first four real-valued MITEs. The MITEs are 1.6818, 2.3185, 2.9533, 3.0791.

Ellipse, major semi-axis 1, minor semi-axis 4/5, n = 4

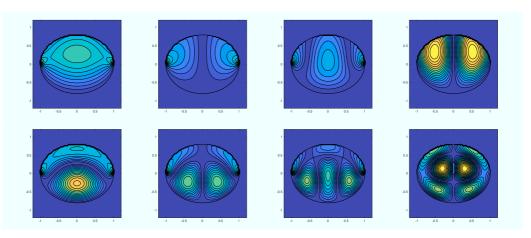


Figure: Absolute value of u (first row) and v (second row) for the first four real-valued MITEs. The MITEs are 1.9111, 2.4973, 3.1282, 3.4609.

More on ellipses, major semi-axis 1

Table: MITEs for ellipses with various minor semi-axis using n = 4.

Minor semi-axis	1st MITE	2 nd MITE	3 rd MITE	4 th MITE
1	1.6818	2.3185	2.9533	3.0791
4/5	1.9111	2.4973	3.1282	3.4609
1/2	2.7709	3.1764	3.7892	4.3916

Table: MITEs for ellipses with various minor semi-axis using n = 1/2.

Minor semi-axis	1 st MITE	2 nd MITE	3 rd MITE	4 th MITE
1	3.1620	4.5193	4.6482	5.8022
4/5	3.5798	4.8518	5.5187	6.2683
1/2	5.1115	6.1186	7.3248	8.4891

Unit square, n = 4

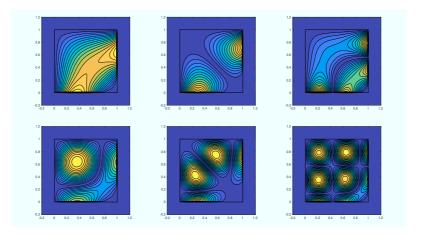


Figure: Absolute value of u (first row) and v (second row) for the first three real-valued MITEs. The MITEs are 3.0503, 4.2622, 5.1805.

Unit square, n = 4

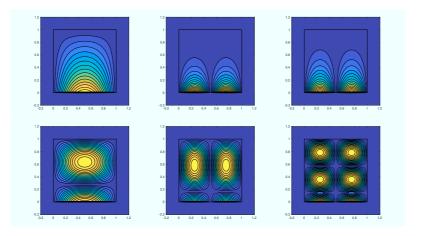


Figure: Absolute value of u (first row) and v (second row) for the first three real-valued MITEs. The MITEs are 2.6717, 3.6662, 4.8367.

Unit square, n = 4

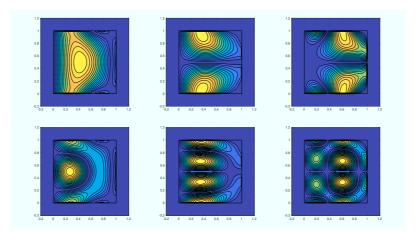


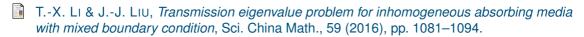
Figure: Absolute value of u (first row) and v (second row) for the first three real-valued MITEs. The MITEs are 4.0802, 5.2285, 5.7030.

Part V: Summary & outlook

SUMMARY & OUTLOOK

- Reviewed existence and discreteness of MITEs for real-valued constant n.
- Derived a system of boundary integral equations.
- Showed how to solve it.
- Provided extensive numerical results for a variety of 2D scatterers.
- Study behavior of the MITE eigenfunctions at corners.
- Investigate inside-outside-duality method both theoretically and practically.

REFERENCES



F. YANG & P. MONK, *The interior transmission problem for regions on a conducting surface*, Inverse Problems, 30 (2014), 015007 (34pp).

