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We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges.
Our calculations are performed on two 2þ 1-flavor ensembles generated using a 2-HEX-smeared
Wilson-clover action at the physical pion mass and lattice spacings a ≈ 0.116 and 0.093 fm. We use a
wide range of source-sink separations—eight values ranging from roughly 0.4 to 1.4 fm on the coarse
ensemble and three values from 0.9 to 1.5 fm on the fine ensemble—which allows us to perform an
extensive study of excited-state effects using different analysis and fit strategies. To determine the
renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI0-MOM
and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are
computed in the MS scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%,
gT ¼ 0.972ð41Þ and gA ¼ 1.265ð49Þ. The resulting scalar charge, gS ¼ 0.927ð303Þ, has a much larger
uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the
lattice spacing.

DOI: 10.1103/PhysRevD.99.114505

I. INTRODUCTION

Nucleon charges quantify the coupling of nucleons to
quark-level interactions and play an important role in the
analysis of the Standard Model and beyond the Standard
Model (BSM) physics. The isovector charges, gX, are
associated with the β-decay of the neutron into a proton
and are defined via the transition matrix elements,

hpðP; sÞjūΓXdjnðP; sÞi ¼ gXūpðP; sÞΓXunðP; sÞ; ð1Þ

where the Dirac matrix ΓX is 1, γμγ5 and σμν for the scalar
(S), the axial (A) and the tensor (T) operators, respectively.
They are straightforward to calculate in lattice QCD since

they receive only connected contributions arising from the
coupling of the operator to the valence quarks; i.e., there are
no contributions from disconnected diagrams. Lattice
calculations of these charges were recently reviewed by
FLAG [1], and we note some calculations of them in the
last few years in Refs. [2–15].
The nucleon axial charge is experimentally well deter-

mined; the latest PDG value is gA ¼ 1.2724ð23Þ [16]. In
addition to its role in beta decay, the axial charge gives
the intrinsic quark spin in the nucleon, and its deviation
from unity is a sign of chiral symmetry breaking. Since
the axial charge is so well measured, it is considered to
be a benchmark quantity for lattice calculations, and it is
essential for lattice QCD to reproduce its experimental
value.
Unlike the axial charge, the nucleon scalar and tensor

charges are difficult to directly measure in experiments.
Thus, computations of those observables within lattice
QCD will provide useful input for ongoing experimental
searches for BSM physics. The generic BSM contributions
to neutron beta decay were studied in Ref. [17], where it

*n.hasan@fz-juelich.de
†jeremy.green@desy.de

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 114505 (2019)

2470-0010=2019=99(11)=114505(22) 114505-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.114505&domain=pdf&date_stamp=2019-06-19
https://doi.org/10.1103/PhysRevD.99.114505
https://doi.org/10.1103/PhysRevD.99.114505
https://doi.org/10.1103/PhysRevD.99.114505
https://doi.org/10.1103/PhysRevD.99.114505
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


was shown that the leading effects are proportional to these
two couplings; thus, calculations of gS and gT are required
in order to find constraints on BSM physics from beta-
decay experiments. The tensor charge is also equal to the
isovector first moment of the proton’s transversity parton
distribution function (PDF), h1iδu−δd. Constraining the
experimental data with lattice estimates of the tensor charge
reduces the uncertainty of the transversity PDF signifi-
cantly [18]. In experiment, there are multiple observables
that could be used to constrain gT [19,20], and the overall
precision will be greatly improved by the SoLID experi-
ment at Jefferson Lab [21], providing a test of predictions
from lattice QCD. In addition, the tensor charge controls
the contribution of the quark electric dipole moments
(EDM) to the neutron EDM, which is an important
observable in the search for new sources of CP violation.
The scalar charge is related via the conserved vector current
relation to the contribution from the difference in u and d
quark masses to the neutron-proton mass splitting in the
absence of electromagnetism, gS ¼ δMQCD

N =δmq [22].
In this paper, we present a lattice QCD calculation of the

isovector axial, scalar, and tensor charges of the nucleon
using two ensembles at the physical pion mass with different
lattice spacings. This paper is organized as follows. In
Sec. II, we describe the parameters of the gauge ensembles
analyzed, the lattice methodology, and the fits to the two-
point functions used to extract the energy gaps to the first
excited state on each ensemble. We discuss different analysis
methods for estimating the three bare charges and eliminat-
ing the excited-state contaminations and present a procedure
for combining the multiple results in Sec. III. The procedure
we follow for determining the renormalization factors for the
different observables using both RI0-MOM and RI-SMOM
schemes is described in Sec. IV. In Sec. V, we give the final
estimates of the renormalized charges and discuss the con-
tinuum and infinite volume effects. Finally, we give our
conclusions in Sec. VI. In Appendix A, we show analysis
results of the bare charges using the many-state fit, which is
an alternative model for excited-state contributions based on
the contributions of noninteracting Nπ states with relative
momentum ðp⃗Þ2 < ðp⃗maxÞ2. In Appendix B, we list the bare
charges determined on the two ensembles studied in this
work, along with data used in previous publications [2,3].

II. LATTICE SETUP

A. Correlation functions

To determine the nucleon matrix elements in lattice
QCD, we compute the nucleon two-point and three-point
functions at zero momentum,

C2ðtÞ ¼
X
x⃗

ðΓpolÞαβh χβðx⃗; tÞ χ̄αð0Þi; ð2Þ

CX
3 ðτ; TÞ ¼

X
x⃗;y⃗

ðΓpolÞαβh χβðx⃗; TÞOXðy⃗; τÞ χ̄αð0Þi: ð3Þ

Here, we place the source at time slice 0, the sink at time
slice T, and insert the operator OX at the intermediate time
slice τ. The latter is the isovector current OX ¼ q̄ΓX

τ3

2
q,

where q is the quark doublet q ¼ ðu; dÞT , and χ ¼
ϵabcðũTaCγ5 1þγ4

2
d̃bÞũc is a proton interpolating operator

constructed using smeared quark fields q̃. We use
Wuppertal smearing [23], q̃ ∝ ð1þ αHÞNq, where H is
the nearest-neighbor gauge-covariant hopping matrix con-
structed using the same smeared links used in the fermion
action; the parameters are chosen to be α ¼ 3.0 on both
ensembles, N ¼ 60 on the coarse ensemble, and N ¼ 100
on the fine ensemble. The spin and parity projection
matrices are defined1 as Γpol ¼ 1

2
ð1þ γ4Þð1 − iγ3γ5Þ.

In order to compute CX
3 , we use sequential propagators

through the sink [24]. This has the advantage of allowing
for any operator to be inserted at any time using a fixed
set of quark propagators, but new backward propagators
must be computed for each source-sink separation T.
The three-point correlators have contributions from both
connected and disconnected quark contractions, but we
compute only the connected part since for the isovector
flavor combination the disconnected contributions can-
cel out.

B. Simulation details

We perform our lattice QCD calculations using a tree-
level Symanzik-improved gauge action and 2þ 1 flavors of

TABLE I. Parameters of the ensembles and measurements used in this work. The lattice spacing is taken from Ref. [25], where it is set
using the mass of the Ω baryon at the physical point. Nconf refers to the number of gauge configurations analyzed and NAMA

meas ¼
2 × Nconf × NAMA

src is the number of measurements performed using the AMA method with NAMA
src being the number of source positions

used on each gauge configuration. The factor of 2 in Nmeas accounts for the use of forward- and backward-propagating states. Finally,
NHP

meas refers to the number of measurements made with high-precision.

Ensemble ID Size β amud ams a [fm] amπ mπ [MeV] mπL Nconf T=a NAMA
meas NHP

meas

Coarse 484 3.31 −0.09933 −0.04 0.1163(4) 0.0807(12) 137(2) 3.9 212 f3; 4; 5g 40704 424
f6; 7; 8; 10; 12g 81408 848

Fine 644 3.5 −0.05294 −0.006 0.0926(6) 0.0626(3) 133(1) 4.0 442 f10; 13; 16g 56576 884

1In this paper we use Euclidean conventions, fγμ; γνg ¼ 2δμν.
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tree-level improved Wilson-clover quarks, which couple to
the gauge links via two levels of HEX smearing [25]. We
use two ensembles at the physical pion mass: one with
size 484 and lattice spacing a ≈ 0.116 fm which we call
coarse, and another with 644 and a ≈ 0.093 fm which
we call fine. Both volumes satisfy mπL ≈ 4. On the
coarse ensemble, we perform measurements on 212
gauge configurations using source-sink separations T=a ∈
f3; 4; 5; 6; 7; 8; 10; 12g ranging roughly from 0.4 to
1.4 fm. In addition, we make use of all-mode-averaging
(AMA) [26,27] to reduce the computational cost through
inexpensive approximate quark propagators. For T=a ∈
f3; 4; 5g, we use approximate samples from 96 source
positions per gauge configurations and high-precision
samples from one source position for bias correction,
and for T=a ∈ f6; 7; 8; 10; 12g we use double those
numbers. On the fine ensemble, we perform the calcu-
lations on 442 gauge configurations using source-sink
separations T=a ∈ f10; 13; 16g ranging roughly from
0.9 to 1.5 fm. AMA is applied with 64 sources with

approximate propagators and one source for bias correc-
tion per gauge configuration. Table I summarizes the
parameters and the number of measurements performed
on each of the ensembles.
On each gauge configuration, a random initial source

position is chosen and the others are evenly separated and
distributed throughout the volume. We always bin all of the
samples on each configuration to account for any spatial
correlations. In addition, we have tested for autocorrela-
tions by binning the configurations in groups of 2, 4, 8, and
16: no significant trends were identified in the estimated
statistical uncertainty, and therefore we elected not to bin
samples from different configurations.

C. Fitting two-point functions

Inserting a complete set of states I ¼ P
njnihnj into

Eq. (2) yields the spectral decomposition,

C2ðtÞ ¼
X
n

e−EntðΓpolÞαβhΩj χβjnihnj χ̄αjΩi; ð4Þ

FIG. 1. Left column: Dependence of E0 on tmin estimated using one-state fits to the two-point function with tmax ¼ 16 and tmax ¼ 20
for the coarse and fine ensemble, respectively. Moreover, we plot E0 extracted from two-state fits to the two-point function with
tmax ¼ 12 and tmax ¼ 16 for the coarse and fine ensemble, respectively. The blue shaded bands correspond to our preferred estimates of
the ground-state masses. Right column: Dependence of the energy gap, E1 − E0, (red circles) on tmin using the previous two-state fits
where the red shaded bands refer to our preferred estimates.
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where we use the shorthand χβ ¼ χβð0Þ. Truncating this
to the ground state and a single excited state, on each
ensemble we perform two-state fits to the two-point
correlation functions at zero momentum:

C2ðtÞ ¼ a0e−E0t þ a1e−E1t; ð5Þ

where ai and Ei denote the amplitudes and the energies of
the two states. For comparison, we also perform one-state
fits with C2ðtÞ ¼ a0e−E0t only.
The blue and red points in Fig. 1 show the dependence of

aE0 and aΔE1 ¼ aðE1 − E0Þ on the start time slice tmin=a
for the coarse (left) and fine (right) ensembles. The values
for aE0 were obtained using both the one- and two-state
fits. The shaded blue and red bands indicate our preferred
estimates of aE0 and aΔE1, respectively. Those correspond
to the two-state fits with tmin=a ¼ 4 and tmax=a ¼ 12 for
the coarse ensemble and tmin=a ¼ 5 and tmax=a ¼ 16 for
the fine ensemble. The quality of the resulting fits is shown
in Fig. 2 by plotting the two-point function divided by its
fitted ground-state contribution,

C2ðtÞ
a0 expð−E0tÞ

: ð6Þ

Table II gives a summary of the estimated fit parameters on
both the coarse and fine ensembles.

III. ESTIMATION OF BARE CHARGES

The spectral decomposition of the three-point function is

CX
3 ðτ; TÞ ¼

X
n;n0

e−EnðT−τÞe−E0
nτðΓpolÞαβ

× hΩj χβjnihnjOXjn0ihn0j χ̄αjΩi; ð7Þ

where OX ¼ OXð0Þ. This decomposition, along with
Eq. (4), formally only holds in the continuum limit since
the lattice action includes a clover term and smearing that
extend in the time direction. In practice, this means that the
shortest time separations may not be trustworthy. When the
time separations τ and T − τ are large, excited states are
exponentially suppressed and the ground-state denoted by
n; n0 ¼ 0 dominates. In this limit, the ratio of CX

3 ðτ; TÞ and
C2ðTÞ yields the bare charge,

RXðτ; TÞ≡ CX
3 ðτ; TÞ
C2ðTÞ
⟶
large τ;ðT−τÞ

gbareX þ
X
n

½bnðe−ΔEnðT−τÞ þ e−ΔEnτÞ

þ b0ne−ΔEnT þ…�; ð8Þ

where ΔEn ≡ En − E0 is the energy gap between nth
excited state and ground state. Increasing T suppresses
excited-state contamination, but it also increases the noise;
the signal-to-noise ratio is expected to decay asymptotically
as e−ðE−3

2
mπÞT [28]. The ratio RXðτ; TÞ produces at large T a

plateau with “tails” at both ends caused by excited states.
In practice, for each fixed T, we average over the central
two or three points near τ ¼ T=2, which allows for matrix
elements to be computed with errors that decay asymp-
totically as e−ΔE1T=2.
Excited-state contamination is a source of significant

systematic uncertainties in the calculation of nucleon

FIG. 2. Plots of the two-point function divided by the ground-state contribution, for both the coarse (left) and the fine (right)
ensembles.

TABLE II. Estimated parameters of two-state fit to two-point
correlation functions.

Ensemble aE0 aE1 a1=a0 χ2=dof

Coarse 0.5550(56) 1.08(11) 0.97(20) 0.45
Fine 0.4279(36) 0.737(70) 0.89(12) 0.33
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structure observables. These contributions to different
nucleon structure observables have been studied recently
using baryon chiral perturbation theory (ChPT) [29–32].
Contamination from two-particle Nπ states in the plateau
estimates of various nucleon charges, which becomes more
pronounced in physical-point simulations, has been studied
in Refs. [30,32]. It was found that this particular contami-
nation leads to an overestimation at the 5%–10% level for
source-sink separations of about 2 fm. This suggests that
the source-sink separations of ∼1.5 fm reached in present-
day calculations may not be sufficient to isolate the
contribution of the ground-state matrix element with the
desired accuracy. On the other hand, in Ref. [31] a model
was used to study corrections to the LO ChPT result for the
axial charge; it was found that high-momentum Nπ states

with energies larger than about 1.5MN can be the cause for
the underestimating of the axial charge observed in lattice
QCD calculations. These contributions, however, cannot be
estimated in chiral perturbation theory. References [29–32]
find that multiple low-lying nucleon-pion states give impor-
tant contributions to RXðτ; TÞ, which is in stark contrast to
the commonly used fit model based on a single excited state.
In the remainder of this section, we discuss the analysis

methods we employ to study and suppress excited-state
contributions to the axial, scalar, and tensor charges. We
start with estimating the bare charges using the standard
“ratio method” in Sec. III A. In Sec. III B, we discuss the
use of the summation method in addition to presenting a
two-state fit model to the summations, which was inspired
by the calculation in Ref. [10] that quotes a percent-level

FIG. 3. Results for the isovector axial charge on the coarse (top row) and fine (bottom row) ensembles using the ratio and summation
methods. The first column shows the dependence of the ratios on the operator insertion time τ and the source-sink separation T. Different
source-sink separations are displayed in different colors. The blue circles in the second column show the values of the charges estimated
by averaging the two or three central points of RAðτ; TÞ near τ ¼ T=2 and their dependences on T=2. The red squares in the second
column show the resulting bare isovector axial charges using the summation method. Here, we show the dependences of the obtained
axial charge on the minimal source-sink separations included in the fit Tmin. The open symbol indicates a poor fit with p-value less
than 0.02.
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uncertainty for gA. Furthermore, we employ a two-state fit
to the ratios RXðτ; TÞ, which is presented in Sec. III C.
Finally, in Sec. III D, we explain the procedure we follow to
combine the estimates from the different fit strategies and
extract final values for the bare charges.

A. Ratio method

The ratio method is a simple approach that allows for
excited-state effects to be clearly seen. Figures 3–5 show
our results for the isovector axial, scalar, and tensor charges
on the coarse (top rows) and fine (bottom rows) ensembles.
The first columns of those figures show the ratios yielding
the different charges as functions of the insertion time τ=a
shifted by half the source-sink separation, i.e., ðτ−T=2Þ=a.
The different colors correspond to the ratios obtained using
different source-sink separations. For the axial and scalar
charges (particularly on the coarse ensemble), there appears
to be a jump in the data from τ ¼ 0 to τ=a ¼ 1, which is
expected because even in the continuum limit the spectral
decomposition in Eq. (7) assumes a nonzero separation

between the interpolating operator and the current. On the
other hand, the data appear to vary smoothly between τ ¼ a
and τ ¼ T − a, suggesting that the effect of the lack of a
transfer matrix is mild.
As explained in Sec. II, when the times τ and T − τ0 are

large, the ratios become time-independent. One observes
increasing (for gbareA and gbareS ) or decreasing (for gbareT )
trends for the plateau values as the time separations are
increased and clear curvatures indicating the significant
contributions from excited states. We estimate the different
charges by averaging the central two or three points
near τ ¼ T=2. The blue circles in the second columns of
Figs. 3–5 are the estimated charges from the plateaus
plotted against T=2. We know that the excited-state con-
tributions to RXðτ; TÞ decay as e−ΔE1T=2 which results
eventually in a plateau when the source-sink separation is
large enough. We observe on both the coarse and fine
ensembles that the scalar charge reaches a plateau as
expected with increasing T=2. This does not happen in
the case of the tensor charge, indicating that this method

FIG. 4. Results for the isovector scalar charge using the ratio and summation methods. See the caption of Fig. 3 for explanations.
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fails to reliably control excited states for gT. For the axial
charge, a plateau is possibly reached at the largest values of
T=2, although this coincides with the presence of particu-
larly large statistical uncertainties.

B. Summation method

For studying the excited-state contributions, we use in
addition to the aforementioned ratio method, the summa-
tion method [33,34]. The summation method allows
improving the asymptotic behavior of excited-state con-
tributions through summing ratios at each source-sink
separation T. The summed ratios can be shown to be
asymptotically linear in the source-sink separation,

SXðTÞ≡ XT−τ0
τ¼τ0

RXðτ; TÞ

¼ c0 þ TgbareX þOðTe−ΔE1TÞ þOðe−ΔE1TÞ: ð9Þ
We choose τ0=a ¼ 1. The matrix element can then be
extracted from the slope of a linear fit to SXðTÞ at several

values of T. The leading excited-state contaminations
decay as Te−ΔE1T .
For performing the fits of the summation method on the

coarse ensemble, we vary the fit range by fixing the
maximum source-sink separation included in the fit to
Tmax=a ¼ 12 and changing the minimal source-sink sepa-
ration, Tmin=a. The obtained results for the three charges on
the coarse ensemble are displayed as red squares in the upper
right panels of Figs. 3–5 which demonstrate the dependences
of gbareX on Tmin=a. Here, we see that the obtained gbareA shows
a slight increase when increasing from the shortest Tmin and
gbareT shows a somewhat larger decrease, whereas gbareS is flat.
We eventually reach a plateau in all cases. The fit quality is
measured by computing the p-value and the open symbols
refer to fits with p-value < 0.02. The red squares in the
lower right panels of Figs. 3–5 show the results for the
summation method on the fine ensemble including all three
available source-sink separations, which leads to one sum-
mation point at Tmin=a ¼ 10.
The numerous source-sink separations used for calcu-

lations on the coarse ensemble allow us to perform the fit to

FIG. 5. Results for the isovector tensor charge using the ratio and summation methods. See the caption of Fig. 3 for explanations.
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the summations in Eq. (9) including contributions from the
first excited state. This leads to two additional fit param-
eters c1 and c2 where ΔE1 is estimated from two-state fit
to the two-point correlation function. The fit function
becomes

SXðTÞ ¼ c0 þ gbareX T þ c1Te−ΔE1T þ c2e−ΔE1T: ð10Þ
In Fig. 6, we show the results of such a fit for all three
charges. As before, we fix Tmax=a ¼ 12 and vary Tmin. The
results in Fig. 6 show that the fits for the different charges
are stable although with relatively large statistical errors.
The end caps of the error bars refer to the resulting
statistical uncertainties when fixing ΔE1 in Eq. (10) to
its central value whereas the vertical lines of the error bars
result from taking the uncertainties in ΔE1 into consid-
eration when evaluating the fit in Eq. (10). We see that
fixing ΔE1 to its central value has little to no effect on the
final results.

C. Two-state fit of the ratio

In this section, we study including the contribution from
a single excited state when fitting the ratio, RXðτ; TÞ. This is
performed using the fit function,

RXðτ; TÞ ¼ gbareX þ bXðe−ΔE1τ þ e−ΔE1ðT−τÞÞ þ b0Xe
−ΔE1T:

ð11Þ

Here, ΔE1 is estimated from two-state fit to the two point
function. We perform the stability analysis for this method
by fitting to all points with τ ∈ ½τ0; T − τ0� and varying τ0.
As previously noted, the ratios appear smooth starting from
τ=a ¼ 1, and therefore we choose to start from τ0=a ¼ 1 in
order to judge the approach to a plateau. However, for our
final selection of results in the next subsection, we will not
use τ0=a smaller than 3.
The circles with the outer statistical uncertainties in the

plots of Fig. 7 show the resulting unrenormalized isovector

FIG. 6. The obtained unrenormalized axial, scalar, and tensor charges on the coarse ensemble from fits to the summations SXðTÞ
including contributions from a single excited state. The end caps of the error bars refer to the resulting statistical uncertainties when
fixing ΔE1 in Eq. (10) to its central value, whereas the vertical lines of the error bars result from taking the uncertainties in ΔE1 into
consideration when evaluating the fit in Eq. (10).
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charges as we vary τ0 for the coarse (left column) and fine
(right column) ensembles. The fit range includes source-
sink separations satisfying T ≥ 2τ0; this means that for the
coarse ensemble, as τ0 is increased the shorter source-sink

separations (which have the most precise data) will be
excluded from the fit. We notice that for gbareA , there is no
significant dependence on τ0. The estimates for gbareS show a
noisier signal on the fine ensemble. The signal for gbareT on

FIG. 7. Estimates of the unrenormalized isovector axial, scalar, and tensor charges from the two-state fit to RXðτ; TÞ as functions of τ0
for the coarse and fine ensembles. The inner error bars (end caps) refer to the resulting statistical uncertainties when fixing ΔE1 in
Eq. (11) to its central value whereas the outer error bars (vertical lines) result from taking the uncertainties in ΔE1 into consideration
when evaluating the fit in Eq. (11).
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the fine ensemble shows an upward trend in the central
value for increased τ0 while the statistical uncertainties are
decreasing; this is normally not expected, whereas the
signal on the coarse ensemble shows no to little dependence
on τ0. The inner error bars of Fig. 7 show the uncertainties
when ΔE1 is fixed to its central value. The difference
between the inner and outer statistical uncertainties for the
axial charge shows that the uncertainty on the energy gap
makes a large contribution to the uncertainties of the final
results, particularly when including small time separations
in the fit. This may be because the small time separations
are more sensitive to the model parameters used to remove
excited-state contributions. This observation applies also to
the tensor charge but less to the scalar charge.

D. Combining different analyses

We have so far applied four methods for analyzing the
excited-state contributions to the different observables on
each ensemble, namely
(1) Ratio method
(2) Summation method
(3) Two-state fit to RXðτ; TÞ
(4) Two-state fit to SXðTÞ (on the coarse ensemble)

For each method, we have plotted the estimated charges as
functions of a Euclidean time separation T=2, Tmin, or τ0,
which we will generically call δt. For each bare charge, we
want to choose a preferred δt for each method and then
combine the results from all methods to obtain a final result.
In order to reduce the number of case-by-case decisions, we
have devised a procedure that we will follow to accomplish
this. Our procedure is designed to fulfill the following
requirements ordered in decreasing importance:

(i) Fit ranges with poor fit quality are excluded, since
that indicates the data are not compatible with the fit
model and therefore the fit result is not trustworthy.

(ii) Estimations should be taken from the asymptotic
plateau regime, where there is no significant depend-
ence on δt.

(iii) Smaller statistical uncertainties are preferred.
(iv) Larger time separations are preferred so that we

reduce the residual excited-state contamination.
In the following, we outline the first part of the procedure

which aims to find a preferred δt from each analysis method.
(1) If data are obtained from fits (all methods except the

ratio method), we start from the smallest δt, δtmin,

and increase it until the fit quality is good. The
criterion is for the fit to have a p-value greater
than 0.02. We call the smallest δt that fulfills this
criterion δt0.

(2) We fit the data starting from δt0 with a constant
and test if the p-value of that fit is greater than 0.05.
We increase δt until this is the case. We name the
smallest δt that fulfills this requirement δt1.

(3) In order to make sure that we are well inside a
plateau region, we take δt2¼δt1þ0.2 fm. Rounded
to the nearest lattice spacing, this corresponds to the
addition of 2a on each ensemble.

(4) We find the data point with δt ≥ δt2 that has the
smallest statistical uncertainty. We denote this point
as δt3.

(5) Starting from the largest available δt, we decrease δt
until we find a data point with uncertainty no more
than 20% larger than the uncertainty at δt3. We
consider this data point to be the final estimation for
the analysis method under consideration. We name
the time separation at this point δtf. The motivation
here is that for points of similar statistical uncer-
tainty, larger δt is preferred because of the reduced
residual excited-state contamination.

On the fine ensemble, we do not have small values of δt
for the ratio and summation methods. When δt1 ¼ δtmin,
this suggests that the plateau could start earlier than our
available data. In this case, we choose to take δt2 deter-
mined on the coarse ensemble for the same method and
same charge, and use it (scaled to account for the different
lattice spacings) as δt2 on the fine ensemble.
The above procedure gives multiple estimates for each

observable: at most one from each method. The obtained
estimates of the charges for the coarse and fine ensembles
are listed in Tables III and IV, respectively. In those tables,
we also outline for each case the obtained δtmin which is the
smallest available δt, δt0 resulting from the first step in the
above procedure and δt1 from the second step. For cases
where δtmin ¼ δt1, this indicates that there is no significant
residual excited-state contamination. This is always the
case for two-state fits, indicating that the data are compat-
ible with the single-excited-state model. There are cases in
the two tables where we have no remaining data after the
second or the third step of the above procedure to define a
δtf, and therefore we leave those fields empty, as no reliable

TABLE III. The final estimates for each method and observable on the coarse ensemble.

gbareA gbareS gbareT

Method δtmin δt0 δt1 δtf value δt0 δt1 δtf value δt0 δt1 δtf value

Ratio 1.5a 3.5a 6a 1.268(38) 2a 4a 0.730(62) 5a � � � � � �
Summation 3a 4a 4a 6a 1.284(17) 3a 3a 6a 0.77(12) 5a 5a 7a 1.034(17)
Two-state fit to RXðτ; TÞ 1a 1a 1a 3a 1.276(22) 1a 1a 3a 0.742(91) 1a 1a 4a 1.015(31)
Two-state fit to SXðTÞ 3a 3a 3a 5a 1.28(10) 3a 3a 5a 0.93(91) 3a 3a 5a 1.050(61)
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result could be obtained. We notice that we obtain similar
δt1 for the ratio and summation methods which indicates
that it is appropriate to compare ratios at separation T with
summation points at Tmin ¼ T=2. In this case (and it can be
seen in Figs. 3–5), the summation method provides more
precise results than the ratios; this is in contrast to the usual
comparison of ratio at separation T and summation at
Tmin ¼ T, which finds that the summation method has
larger uncertainties. The values for the axial, scalar, and
tensor charges in both tables show consistency within error
bars between the different methods. The statistical uncer-
tainties differ between the different fit strategies; in
particular we obtain relatively large error bars for the
scalar charge on both ensembles.
For obtaining a final estimate of the charges, we combine

the different analysis methods by performing a weighted
average to determine the central value. The statistical
uncertainty is determined using bootstrap resampling. We
test the compatibility of the central value with the set of
analysis methods using a correlated χ2. If the reduced χ2 is
greater than one, then this indicates the different analysis
methods are not in agreement, and the corresponding
systematic uncertainty can be accounted for by scaling
the statistical uncertainty by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=dof

p
. We list our final

estimates of the charges on both ensembles in TableV. In this
table, the given uncertainties are obtained from bootstrap
resampling and all the χ2 values are acceptable. We obtain
the largest χ2=dof ¼ 1.04 for gbareS from the fine ensemble.

IV. NONPERTURBATIVE RENORMALIZATION

We determine renormalization factors for isovector axial,
scalar, and tensor bilinears using the nonperturbative
Rome-Southampton approach [35], in both RI0-MOM
[35,36] and RI-SMOM [37] schemes, and (for the scalar
and tensor bilinears) convert and evolve to the MS scheme
at scale 2 GeV using perturbation theory. Our primary data
are the Landau-gauge quark propagator,

SðpÞ ¼
Z

d4xe−ip·xhψðxÞψ̄ð0Þi; ð12Þ

where ψ is a u or d field, and the Landau-gauge Green’s
functions for operator O,

GOðp0; pÞ ¼
Z

d4x0d4xe−ip0·x0eip·xhψðx0ÞOð0Þψ̄ðxÞi:

ð13Þ
In our case, O is an isovector quark bilinear, and there is
only one Wick contraction, which is a connected diagram.
We evaluate both of these objects using four-dimensional
volume plane wave sources, yielding an average over all
translations in the lattice volume. From these, we construct
our main objects, the amputated Green’s functions,

ΛOðp0; pÞ ¼ S−1ðp0ÞGOðp0; pÞS−1ðpÞ: ð14Þ
These renormalize as ΛR

O ¼ ðZO=Zψ ÞΛO. We will not
determine Zψ directly; instead, we will take ratios to
determine ZO=ZV and compute ZV from pion three-point
functions.

A. Conditions and matching

The RI0-MOM scheme uses kinematics p0 ¼ p, whereas
RI-SMOM uses p2 ¼ ðp0Þ2 ¼ q2, where q ¼ p0 − p. In
both cases the scale is defined as μ2 ¼ p2. Note that a
comparison of RI-MOM and RI-SMOM renormalization
was previously done using chiral fermions in Ref. [38].
For the vector current, the operator is Vμ ¼ ψ̄γμψ . In

RI0-MOM, the renormalization condition is

1

36
Tr½ΛR

Vμ
ðp; pÞγνPμν� ¼ 1; ð15Þ

where Pμν ¼ δμν − pμpν=p2 is the projector transverse to
p, and for RI-SMOM the condition is

1

12q2
Tr½qμΛR

Vμ
ðp0; pÞq � ¼ 1: ð16Þ

Imposing the vector Ward identity, both of these imply that
the quark field renormalization condition must be

−i
12p2

Tr½S−1R ðpÞ=p� ¼ 1; ð17Þ

although we do not evaluate this explicitly.

TABLE IV. The final estimates of the charges for each method on the fine ensemble.

gbareA gbareS gbareT

Method δtmin δt0 δt1 δtf value δt0 δt1 δtf value δt0 δt1 δtf value

Ratio 5a 5a 8a 1.282(33) 5a 5a 0.895(47) 6.5a � � � � � �
Summation 10a 10a 10a 10a 1.283(32) 10a 10a 10a 1.25(35) 10a 10a 10a 0.959(24)
Two-state fit to RXðτ; TÞ 1a 1a 1a 4a 1.259(23) 1a 1a 4a 1.11(20) 1a 1a 5a 0.990(27)

TABLE V. Our final estimates of the charges on the coarse and
fine ensembles.

Ensemble gbareA gbareS gbareT

Coarse 1.282(17) 0.740(74) 1.029(20)
Fine 1.271(24) 0.913(54) 0.972(23)
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For the axial current, the operator is Aμ ¼ ψ̄γμγ5ψ . In
RI0-MOM, the condition is

1

36
Tr½ΛR

Aμ
ðp; pÞγ5γνPμν� ¼ 1; ð18Þ

and for RI-SMOM, it is

1

12q2
Tr½qμΛR

Aμ
ðp0; pÞγ5q � ¼ 1: ð19Þ

Each of these is related by a chiral rotation to the
corresponding condition on the vector current. This implies
that in the chiral limit, the renormalized axial current will
satisfy the axial Ward identity, and therefore no matching to
MS is needed.
For the scalar bilinear, the operator is S ¼ ψ̄ψ . In

RI0-MOM, the condition is

1

12
Tr½ΛR

S ðp; pÞ� ¼ 1; ð20Þ

and for RI-SMOM, it has the same form,

1

12
Tr½ΛR

S ðp0; pÞ� ¼ 1: ð21Þ

For RI0-MOM, the matching to MS is known to three loops
[39,40], and for RI-SMOM it is known to two loops [41].
The anomalous dimension is obtained from the quark mass
anomalous dimension via γS ¼ −γm; we use the four-loop
MS result [42,43].
We write the tensor operator as Tμν ¼ ψ̄ 1

2
½γμ; γν�ψ . In

RI0-MOM, Gracey [40] starts from the decomposition

ΛTμν
ðp;pÞ ¼ Σð1Þ

T ðp2Þ1
2
½γμ;γν� þΣð2Þ

T ðp2Þ =p
p2

ðγμpν − γνpμÞ;

ð22Þ

and then imposes the condition Σð1Þ;R
T ðp2Þ ¼ 1. Note that

chiral symmetry breaking allows more terms to appear, but
they will not contribute to any relevant trace. As Gracey
notes, this term can be isolated via

Σð1Þ
T ðp2Þ ¼ −1

72
Tr

�
ΛTμν

ðp; pÞ
�
1

2
½γμ; γν�

þ =p
p2

ðγμpν − γνpμÞ
��

: ð23Þ

This can be rewritten to obtain the renormalization con-
dition in a simple form,

1

72
Tr

�
ΛR
Tμν

ðp; pÞ 1
2
½γβ; γα�PμαPνβ

�
¼ 1: ð24Þ

For RI-SMOM, the condition is

1

144
Tr

�
ΛR
Tμν

ðp0; pÞ 1
2
½γν; γμ�

�
¼ 1: ð25Þ

For RI0-MOM, the matching to MS is known to three loops
[40], and for RI-SMOM it is known to two loops [41]. We
use the four-loop MS anomalous dimension [44].2

B. Vector current

Following e.g., Refs. [25,47], we determine ZV by
computing the zero-momentum pion two-point function
C2ðtÞ and three-point function C3ðtÞ, where the latter has
source-sink separation T ¼ Lt=2 and an operator insertion
of the time component of the local vector current at source-
operator separation t. The charge of the interpolating
operator gives the renormalization condition,

ZV ½Rðt1Þ − Rðt2Þ� ¼ 1; ð26Þ

for 0 < t1 < T < t2 < Lt, where RðtÞ ¼ C3ðtÞ=C2ðTÞ. We
choose t2 ¼ t1 þ T; the difference results in a large
cancellation of correlated statistical uncertainties, so that
precise results can be obtained with relatively low statistics;
see Fig. 8. Results on the coarse ensemble are much noisier
than on the fine one, although the statistical errors are still
below 1%. We take the unweighted average across the
plateau, excluding the first and last three points. This yields
ZV ¼ 0.9094ð36Þ on the coarse ensemble and ZV ¼
0.94378ð10Þ on the fine one.

C. Axial, scalar, and tensor bilinears

We use partially twisted boundary conditions, namely
periodic in time for the valence quarks rather than the
antiperiodic condition used for sea quarks. The plane
wave sources are given momenta p ¼ 2π

L ðk; k; k;�kÞ,
k ¼ 2; 3;…; L

4a. By contracting them in different com-
binations, we get data for both RI0-MOM kinematics,
p0 − p ¼ 0, and RI-SMOM kinematics, p0 − p ¼ 2π

L ×
ð0; 0; 0;�2kÞ. We used 54 gauge configurations from each
ensemble. However, the modified boundary condition
rendered one configuration on the coarse ensemble excep-
tional and the multigrid solver was unable to converge;
therefore, we omitted this configuration and used only 53
on the coarse ensemble. In addition, on the coarse ensemble
we also performed a cross-check using different kinemat-
ics, p; p0 ∈ f2πL ðk; k; 0; 0Þ; 2πL ðk; 0; k; 0Þg, which ensure
that in the RI-SMOM setup the components of p0 − p
are not larger than those of p and p0. Since the primary
kinematics have p and p0 oriented along a four-dimensional

2Note that the sign of the three-loop term proportional to
N2

f disagrees between the proceedings of Baikov and Chetyrkin
[44] and the first three-loop calculation, done by Gracey [45].
However, in an appendix of a later publication by Chetyrkin
and Maier [46], the sign agrees with Gracey, and therefore we use
that sign.
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diagonal and the alternative kinematics have them oriented
along a two-dimensional diagonal, these setups will some-
times be referred to as 4D and 2D, respectively.
After perturbatively matching the RI0-MOM or RI-SMOM

data to the MS scheme and evolving to the scale 2 GeV, there
will still be residual dependence on the nonperturbative scale
μ2 due to lattice artifacts and truncation of the perturbative
series. To control these artifacts, we perform fits including
terms polynomial in μ2 and also, following Ref. [48], a pole
term. Our fit function has the form Aþ Bμ2 þ Cμ4 þD=μ2;
the constant term A serves as our estimate of the relevant ratio
of renormalization factors ZO=ZV . We also consider fits
without the pole term, i.e., with D ¼ 0. We use two different
fit ranges: 4 to 20 GeV2 and 10 to 30 GeV2.
The main results on the two ensembles are shown in

Fig. 9. The RI-SMOM data are generally very precise (more
so than the RI0-MOM data), which makes the fit quality very
poor in many cases. If the covariance matrix from the
RI0-MOM data is used when fitting to the RI-SMOM data,
then the fit qualities are good except for some of the fits
without a pole term for the axial and tensor bilinears. For the
RI0-MOM data, the fit quality is good when using a pole
term and also good for the scalar bilinear when omitting the
pole term. Therefore, we elect to always include the pole
term in our fits for ZA=ZV and ZT=ZV . For ZS=ZV we use
fits both with and without the pole term; however the fit with
a pole term to the RI0-MOM data is very noisy, and therefore
we exclude it.
To account for the poor fit quality for some of the

RI-SMOM fits, we scale the statistical uncertainty of the
estimated ratio of renormalization factors by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f

p
.

whenever this is greater than one. For each intermediate
scheme, we take the unweighted average of all fit results
as the central value, the maximum of the statistical
uncertainties, and the root-mean-square deviation of the
fit results as the systematic uncertainty. We combine results
from both schemes in the same way to produce our final
estimates, with the constraint that both schemes are given
equal weight. These estimates are also shown in Fig. 9.

For ZS=ZV there is a large discrepancy between the two
intermediate schemes, which leads to a large systematic
uncertainty. This discrepancy is smaller on the fine ensem-
ble, suggesting that it is caused by lattice artifacts.
Figure 10 shows the second set of kinematics on the

coarse ensemble. These data do not reach as high in μ2;
therefore, we choose to fit to a single range of 4 to
15 GeV2. We use the same fit types as for the first set
of kinematics, and the results (which can seen from the
values of the curves at μ2 ¼ 0) are consistent with the final
estimates from the first set of kinematics.
Our final estimates of the renormalization factors, after

adding errors in quadrature, are given in Table VI. The
uncertainty on ZS is more than 10%, and we obtain percent-
level uncertainties on ZA and ZT . In our previous pub-
lications using this lattice action [2,3,51], we used different
values for these renormalization factors, which are listed in
Table VII. These previous values were all obtained using an
RI0-MOM type scheme. Because of our large uncertainty,
ZS is in agreement with the previous value. The latter is also
in agreement with our result from only the RI0-MOM
scheme. Our result for ZT is also consistent with the
previous value. However, we find that ZA is 5%–7% higher
than the values that we previously used, a discrepancy of
three standard deviations on the coarse lattice spacing and
more than six on the fine one. The previous values would
imply that ZA=ZV is within about one percent of unity for
both lattice spacings, which is very difficult to reconcile
with Fig. 9. The discrepancy in central values of ZA is
smaller for the fine lattice spacing than the coarse one,
suggesting that the two determinations could converge in
the continuum limit, although the uncertainties are large
enough that it is also possible the discrepancy has no
dependence on the lattice spacing.

V. RENORMALIZED CHARGES

Multiplying the bare charges in Table V by the renorm-
alization factors in Table VI and adding the uncertainties

FIG. 8. Determination of ZV : coarse ensemble (left) and fine ensemble (right). This difference of ratios provides an estimate of Z−1
V .

Note that the vertical scale is a factor of four smaller for the fine ensemble.
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FIG. 9. Ratios of renormalization factors ZA=ZV , ZS=ZV , and ZT=ZV on the coarse (left) and fine (right) ensembles, determined using
the RI0-MOM (green circles) and RI-SMOM (orange squares) intermediate schemes and then matched to MS at scale 2 GeV. For most
points, the statistical uncertainty is smaller than the plotted symbol. The solid curves are fits to the μ2-range from 4 to 20 GeV2, and the
dashed curves are fits to the range 10 to 30 GeV2. To reduce clutter, uncertainties on the fit curves are not shown. For the fits that include
a pole term, the fit curve without the pole term is also plotted, in the range 0 < μ2 < 6 GeV2. The fits for ZS=ZV without a pole term are
shown using desaturated colors. The open symbols near μ2 ¼ 0 provide the final estimate for each intermediate scheme; their outer
(without end cap) and inner (with end cap) error bars show the total and statistical uncertainties. The filled dark gray diamonds are the
final estimates that combine both schemes.
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in quadrature, we obtain the renormalized charges on the
two ensembles, shown in Table VIII. The final values
should be obtained at the physical pion mass, in the con-
tinuum and in infinite volume. Since both ensembles have
pion masses very close to the physical pion mass and have
large volumes, we neglect these effects as their contribution
to the overall uncertainty is relatively small. With two lattice
spacings, we are unable to fully control the continuum limit;
instead, we choose to account for discretization effects by
taking the central value from the fine ensemble and quoting

an uncertainty that covers the spread of uncertainties on
both ensembles, i.e., δgX ¼ maxðδgfX; jgcX − gfXj þ δgcXÞ,
where gcX and gfX denote the charge computed on the coarse
and fine ensembles, respectively. It should be cautioned that
since discretization effects are formallyOðαsaÞ, which varies
by a factor of only about 3

4
between the two ensembles, it is

possible that the uncertainty from these effects is under-
estimated; additional calculations with finer lattice spacings
would be needed to improve this. We obtain

FIG. 10. Check of alternative kinematics for ratios of renormalization factors on the coarse ensemble. The data with momenta along
four-dimensional diagonals and the final combined estimates are repeated from Fig. 9. The points with open symbols have momenta
along two-dimensional diagonals, and the curves are fits to those points in the μ2-range from 4 to 15 GeV2. For the fits that include a
pole term, the fit curve without the pole term is also plotted, in the range 0 < μ2 < 6 GeV2. The fits for ZS=ZV without a pole term are
shown using desaturated colors.

TABLE VI. Final estimates of renormalization factors on the
two ensembles.

ZV ZA ZS ZT

Coarse 0.9094(36) 0.9703(170) 1.0262(1521) 0.9611(134)
Fine 0.9438(1) 0.9958(50) 1.0157(1065) 0.9999(48)

TABLE VII. Previously used renormalization factors for this
lattice action and these two lattice spacings.

ZA ZS ZT

Coarse 0.9086(21)(111) 1.115(17)(30) 0.9624(62)
Fine 0.9468(6)(56) 1.107(16)(22) 1.011(5)
Reference [49,50] [25] [2]
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gA ¼ 1.265ð49Þ; ð27Þ

gS ¼ 0.927ð303Þ; ð28Þ

gT ¼ 0.972ð41Þ: ð29Þ

The overall uncertainties for the axial and tensor charges are
roughly 4%. The scalar charge has a much larger uncertainty,
due to the large uncertainty in the renormalization factor
and the large difference in central values between the two
ensembles.

Results on these two ensembles can be compared with
our earlier calculations using the same lattice action and
heavier pion masses [2,3], reevaluating those earlier works
based on the more extensive study of excited-state effects in
Sec. III and using the renormalization factors from Sec. IV.
For gA, the summation method with Tmin ≈ 0.7 fm was
found to be acceptable; therefore, we reuse the summation-
method results from Ref. [3], which had Tmin ≈ 0.9 fm. For
gT , we found that the ratio method with the middle
separation (T ≈ 1.2 fm), as used in Ref. [2] was inadequate;
instead we will use the summation method. Finally, for gS
the large statistical uncertainty means that the source-sink
separation used in Ref. [2] with the ratio method was larger
than necessary, and here we will take the shortest separation
(T ≈ 0.9 fm) rather than the middle one. Some caution is
also required here, as excited-state effects can vary with the
pion mass and the choice of smearing parameters in the

FIG. 11. Isovector charges gA, gS, and gT versus pion mass. The inner error bars exclude the uncertainty on the renormalization factor,
which is fully correlated across all ensembles with the same lattice spacing. The smaller of the two volumes at mπ ≈ 0.25 GeV is
displaced horizontally and indicated with an open symbol. The final estimates based on the two physical-point ensembles are indicated
by the dark gray diamonds.

TABLE VIII. Renormalized charges on the two ensembles.

Ensemble gA gS gT

Coarse 1.244(28) 0.759(136) 0.989(23)
Fine 1.265(24) 0.927(112) 0.972(24)

NESREEN HASAN et al. PHYS. REV. D 99, 114505 (2019)

114505-16



interpolating operator. However, the earlier calculations are
generally less precise, which makes it more likely that
excited-state effects are small compared with the statistical
uncertainty. The exception is the fully controlled study of
finite-volume effects at mπ ≈ 250 MeV, which has a
precision similar to this study; however, it is expected that
the contribution from excited states is weakly dependent on
the lattice volume in the range we considered [30,31].
The comparison with our earlier results is shown in

Fig. 11. In these plots, the ensembles used for a study of
short time-extent effects are excluded and for two ensem-
bles at mπ ≈ 250 MeV of size 323 × 48 and 243 × 48, we
have increased statistics. The data show no significant
dependence on the pion mass, which justifies our neglect of
this effect in the final values of the charges. If we assume
that finite-volume effects scale as m2

πe−mπL=
ffiffiffiffiffiffiffiffiffi
mπL

p
as for

the axial charge in chiral perturbation theory at large mπL
[52], then the finite-volume correction can be obtained by
multiplying the difference between the two volumes at
mπ ≈ 250 MeV by 0.28 and 0.23 for the coarse and fine

physical-pion-mass ensembles, respectively. One can see
that this effect is also small compared with the final
uncertainties.
This comparison provides the opportunity to revisit our

earlier result for gA [3], which was unusually low. This was
partly caused by the lower value of ZA, but the value
obtained for mπ ¼ 149 MeV is still two standard devia-
tions below the physical-point coarse ensemble. It appears
that this is a statistical fluctuation, since the methodology
has not been significantly changed.

VI. SUMMARY AND OUTLOOK

We have computed the nucleon isovector axial, scalar,
and tensor charges using two 2þ 1-flavor ensembles with a
2-HEX-smeared Wilson-clover action. Both ensembles are
at the physical pion mass and have lattice spacings of 0.116
and 0.093 fm. We have demonstrated control over excited-
state contamination by using eight source-sink separations
in the range from roughly 0.4 to 1.4 fm on the coarse

FIG. 12. Recent lattice calculations of gA, gS, and gT [2–15]. When separate statistical and systematic errors are quoted, the inner error
bar (with end cap) indicates the statistical uncertainty and the outer one (without end cap) gives the quadrature sum. Open and filled
symbols denote unpublished and published work. Green, orange, and blue denote calculations done with 2, 2þ 1, and 2þ 1þ 1
dynamical quark flavors, which is also indicated in the legend. Circles are used for individual calculations and this work is indicated with
stars. Squares are used for the averages from FLAG [1] and for the determination of gS using the conserved vector current relation and
lattice QCD input [22]. The vertical line with gray error band indicates the PDG value for gA [16].
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ensemble and three source-sink separations in the range from
0.9 to 1.5 fm on the fine ensemble. The shorter source-sink
separations are useful for the summation method but larger
ones are needed for the ratio method. In addition, the choice
of T is observable-dependent: if excited-state effects are
drowned out by noise, then shorter separations are more
useful. We have studied a range of different fitting strategies
to extract the different charges of the nucleon from ratios of
correlation functions, namely the ratio, two-state fit to the
ratios, summation method, two-state fit to the summations
(only on the coarse ensemble). We have studied the stability
of the different analysis methods and designed a procedure
for combining the multiple estimates obtained for each
observable and giving an estimate of its final value. We
have observed consistency between the different analysis
methods, although within larger error bars for the scalar
charge. We have determined the renormalization factors
for the different observables using the nonperturbative
Rome-Southampton approach and compared between the
RI0-MOM and RI-SMOM intermediate schemes to estimate
the systematic uncertainties.
Our final results are given in Eqs. (27)–(29). The axial and

tensor charges show overall uncertainties of roughly 4%.
The obtained scalar charge, however, shows a much larger
uncertainty, due to the large uncertainty in the renormaliza-
tion factor and the large difference in the central values we
observe between the coarse and fine ensembles. In this study,
since both ensembles have pion masses very close to the
physical pion mass and have large volumes, we neglect the
pion-mass dependence and finite volume effects. We have
shown that this is justified when comparing our results to
earlier calculations using the same lattice action and heavier
pion masses. This calculation supersedes the earlier ones
since it improves on them by working directly at the physical
pion mass, using much higher statistics, and performing a
more extensive study of excited-state effects.
Recent lattice calculations of the isovector charges are

summarized in Fig. 12, although we caution that many of
them leave some sources of systematic uncertainty uncon-
trolled or unestimated; see the FLAG review [1] for details.
Our results are consistent with most of these previous
calculations and also with the PDG value of gA.
In our calculation, we have found a large discrepancy for

ZS between the two intermediate renormalization schemes;
it would be therefore useful to verify whether this goes
away at finer lattice spacings, and to compare against other
approaches such as the Schrödinger functional [53] or
position-space [54] methods.
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APPENDIX A: MANY-STATE FIT

In the two-state fit presented in Sec. II C, the obtained E1

is much higher than the lowest expected Nπ or Nππ state.
For this reason, in addition to using the two-state fit model,
we also implement a many-state model for the excited-state
contributions.
Inspired by [62], the many-state fit models the contri-

butions from the first few Nπ noninteracting states with
relative momentum ðp⃗Þ2 < ðp⃗maxÞ2. The noninteracting
levels in a finite cubic volume with periodic boundary
conditions are determined by

En⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πn⃗
L

�
2

þm2
π

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2πn⃗
L

�
2

þm2
N

s
; ðA1Þ

where L denotes the spatial extent of the lattice and n⃗
is a three-vector of integers. We are interested in states
with quantum numbers equal to that of a proton i.e.,
IðJPÞ ¼ 1=2ð1=2þÞ. However, the state of a pion and
nucleon both at rest does not contribute since its parity
is opposite that of the nucleon. The shift between free and
interacting energy levels is small relative to the gap to the
single nucleon state, as shown in [31]. This justifies the use
of noninteracting finite-volume spectrum for the values
of ΔEn⃗ ¼ En⃗ −mN .
The obvious difficulty in performing such a fit comes

from the many fit parameters needed to parametrize the
matrix elements and the overlap of the nucleon interpolat-
ing operator onto each of the Nπ states. In order to reduce
the number of fit parameters involved in the many-state fit,
we assume that the coefficient for ground-to-excited
transitions is the same for all states, and the off diagonal
transition matrix elements between different excited states
are small but that excited states in the two-point function in
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the denominator of the ratio are important. This yields a
formula like the following3:

RXðτ; TÞ ¼ gbareX þ bX
X
n⃗≠0

jn⃗j2≤jn⃗max j2

ðe−ΔEn⃗τ þ e−ΔEn⃗ðT−τÞÞ

þ cX
X
n⃗≠0

jn⃗j2≤jn⃗max j2

e−ΔEn⃗T: ðA2Þ

where the three parameters are gbareX , bX, and cX. Also, the
above n⃗ fulfills jn⃗j2 ≤ jn⃗maxj2, and we exclude the state
where the nucleon and pion are at rest, n⃗ ¼ 0. We per-
form the many-state fit using four different values of
n2max, n2max ∈ f5; 10; 20; 50g.
Figure 13 shows a summary of the estimated unrenor-

malized isovector axial, scalar, and tensor charges as func-
tions of τ0 using this approach applied on both the coarse
(left column) and fine (right column) ensembles. We notice
that the estimated charges at short τ0 depend significantly
on n2max and that increasing n2max results in decreasing the
statistical uncertainties of the estimated charges. In addi-
tion, Fig. 13 shows that the obtained charges for different

FIG. 13. The bare axial, scalar, and tensor charges obtained using the many-state fit to RXðτ; TÞ for the coarse and fine ensembles. The
open symbols refer to fits with p-value < 0.02. The gray bands denote the final estimates of the charges from Table V.

3We thank Oliver Bär for pointing out that the ChPT prediction
includes a factor of p⃗2=ðm2

π þ p⃗2Þ in the terms proportional to bX
and cX . However, for nonzero momenta in our lattice volumes
this factor lies in the range [0.7, 1.0] and including it does not
change the qualitative behavior of these fits.
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n2max values tend to be consistent at the largest τ0. When
comparing to our final estimates of the bare charges in
Table V (gray bands), we notice that the estimates from the
many-state fit approach are consistent within error bars and
that the many-state fit leads to larger statistical uncertainties
for gbareA and gbareS compared to other analysis methods. The
strong dependence on n2max at short τ0 suggests that this
method may be relatively unreliable and that a more

sophisticated model such as the one in Ref. [31] is needed
to extend into the resonance regime.

APPENDIX B: TABLE OF BARE CHARGES

Table IX contains the bare charges used (after renorm-
alizing) in Fig. 11, based on this work (physical-point
ensembles), data from previous publications [2,3], and
increased statistics at mπ ≈ 250 MeV.
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