001     863767
005     20240619083555.0
024 7 _ |a 10.1140/epje/i2019-11831-x
|2 doi
024 7 _ |a 1292-8941
|2 ISSN
024 7 _ |a 1292-895X
|2 ISSN
024 7 _ |a 2429-5299
|2 ISSN
024 7 _ |a 2128/22482
|2 Handle
024 7 _ |a pmid:31144058
|2 pmid
024 7 _ |a WOS:000469518400001
|2 WOS
037 _ _ |a FZJ-2019-03764
082 _ _ |a 530
100 1 _ |a Bjelcic, Monika
|0 P:(DE-Juel1)176662
|b 0
245 _ _ |a Correlation between thermophoretic behavior and hydrophilicity for various alcohols⋆
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1562932537_29083
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Recent experiments for various amides and sugars showed a clear correlation of the temperature dependence of the Soret coefficient with the hydrophilicity, quantitatively described by the logarithm of the 1-octanol/water partition coefficient $\log P$. This coefficient is a measure for the hydrophilicity/hydrophobicity balance of a solute and is often used to model the transport of a compound in the environment or to screen for potential pharmaceutical compounds. In order to validate whether this concept works also for other water soluble molecules we investigated systematically the thermophoresis of mono- and poly hydric alcohols. As experimental method we use a holographic grating technique called infrared Thermal Diffusion Forced Rayleigh Scattering (IR-TDFRS). Experiments showed that the temperature dependence of the Soret coefficient of polyhydric alcohols also correlates with $\log P$ and lies on the same master plot as amides and sugars.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niether, Doreen
|0 P:(DE-Juel1)166572
|b 1
|u fzj
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 2
|e Corresponding author
773 _ _ |a 10.1140/epje/i2019-11831-x
|g Vol. 42, no. 5, p. 68
|0 PERI:(DE-600)2004003-9
|n 5
|p 68
|t The European physical journal / E Soft matter E
|v 42
|y 2019
|x 1292-895X
856 4 _ |u https://juser.fz-juelich.de/record/863767/files/Bjel%C4%8Di%C4%872019_Article_CorrelationBetweenThermophoret.pdf
|y Restricted
856 4 _ |y Published on 2019-05-31. Available in OpenAccess from 2020-05-31.
|u https://juser.fz-juelich.de/record/863767/files/alcohols015.pdf
856 4 _ |y Published on 2019-05-31. Available in OpenAccess from 2020-05-31.
|u https://juser.fz-juelich.de/record/863767/files/supplementary-12.pdf
856 4 _ |y Published on 2019-05-31. Available in OpenAccess from 2020-05-31.
|x pdfa
|u https://juser.fz-juelich.de/record/863767/files/alcohols015.pdf?subformat=pdfa
856 4 _ |y Published on 2019-05-31. Available in OpenAccess from 2020-05-31.
|x pdfa
|u https://juser.fz-juelich.de/record/863767/files/supplementary-12.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/863767/files/Bjel%C4%8Di%C4%872019_Article_CorrelationBetweenThermophoret.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:863767
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166572
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131034
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J E : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-3-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21