000863773 001__ 863773
000863773 005__ 20240610115636.0
000863773 0247_ $$2doi$$a10.1039/C9SM00677J
000863773 0247_ $$2ISSN$$a1744-683X
000863773 0247_ $$2ISSN$$a1744-6848
000863773 0247_ $$2altmetric$$aaltmetric:62399880
000863773 0247_ $$2pmid$$apmid:31241632
000863773 0247_ $$2WOS$$aWOS:000477949700005
000863773 037__ $$aFZJ-2019-03769
000863773 082__ $$a530
000863773 1001_ $$0P:(DE-Juel1)176819$$aDasanna, Anil K.$$b0
000863773 245__ $$aState diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping
000863773 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2019
000863773 3367_ $$2DRIVER$$aarticle
000863773 3367_ $$2DataCite$$aOutput Types/Journal article
000863773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582037595_479
000863773 3367_ $$2BibTeX$$aARTICLE
000863773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863773 3367_ $$00$$2EndNote$$aJournal Article
000863773 520__ $$aRed blood cells in shear flow show a variety of different shapes due to the complex interplay between hydrodynamics and membrane elasticity. Malaria-infected red blood cells become generally adhesive and less deformable. Adhesion to a substrate leads to a reduction in shape variability and to a flipping motion of the non-spherical shapes during the mid-stage of infection. Here, we present a complete state diagram for wall adhesion of red blood cells in shear flow obtained by simulations, using a particle-based mesoscale hydrodynamics approach, multiparticle collision dynamics. We find that cell flipping at a substrate is replaced by crawling beyond a critical shear rate, which increases with both membrane stiffness and viscosity contrast between the cytosol and suspending medium. This change in cell dynamics resembles the transition between tumbling and tank-treading for red blood cells in free shear flow. In the context of malaria infections, the flipping–crawling transition would strongly increase the adhesive interactions with the vascular endothelium, but might be suppressed by the combined effect of increased elasticity and viscosity contrast.
000863773 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000863773 588__ $$aDataset connected to CrossRef
000863773 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b1
000863773 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000863773 7001_ $$00000-0003-1483-640X$$aSchwarz, Ulrich S.$$b3$$eCorresponding author
000863773 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C9SM00677J$$gVol. 15, no. 27, p. 5511 - 5520$$n27$$p5511 - 5520$$tSoft matter$$v15$$x1744-6848$$y2019
000863773 8564_ $$uhttps://juser.fz-juelich.de/record/863773/files/c9sm00677j.pdf$$yRestricted
000863773 8564_ $$uhttps://juser.fz-juelich.de/record/863773/files/c9sm00677j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000863773 909CO $$ooai:juser.fz-juelich.de:863773$$pVDB
000863773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176819$$aForschungszentrum Jülich$$b0$$kFZJ
000863773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b1$$kFZJ
000863773 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000863773 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000863773 9141_ $$y2019
000863773 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000863773 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000863773 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000863773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017
000863773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863773 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863773 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863773 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863773 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000863773 980__ $$ajournal
000863773 980__ $$aVDB
000863773 980__ $$aI:(DE-Juel1)ICS-2-20110106
000863773 980__ $$aUNRESTRICTED
000863773 981__ $$aI:(DE-Juel1)IBI-5-20200312
000863773 981__ $$aI:(DE-Juel1)IAS-2-20090406