001     863780
005     20240711101519.0
024 7 _ |a 10.1186/s13705-019-0210-7
|2 doi
024 7 _ |a 2128/22496
|2 Handle
024 7 _ |a WOS:000475646600001
|2 WOS
037 _ _ |a FZJ-2019-03773
082 _ _ |a 333.7
100 1 _ |a Jesse, Bernhard-Johannes
|0 P:(DE-Juel1)172813
|b 0
|e Corresponding author
245 _ _ |a Adapting the theory of resilience to energy systems: A review and outlook
260 _ _ |a Heidelberg
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1563367712_3954
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Sustainable systems must maintain their function even in the event of disruptions in order to be considered truly sustainable. The theory of resilience concerns the behavior of systems during and aftershocks. Initially, modern understanding of resilience focused on ecological systems; however, the theory was extended to include the ecological aspects and the also social aspects of a system. As a result of climate change, increased efforts have been made to ensure energy systems are more sustainable. The issue of resilience has therefore significantly gained importance of late to energy systems. In the future, modern energy systems will be increasingly exposed to disruptions, whether due to climate change, terrorism, or variable power supply from renewable energy sources. Protecting energy systems from all these threats is only possible at great cost, but it is much more sensible to design resilient systems that can quickly resume their system function after a disturbance. This review looks at research into the resilience and its application to energy systems and identifies similarities and differences. Starting with Holling’s contribution to resilience, the development of the theory is examined and the different definitions are compared. The differences between engineering and ecological resilience are also discussed. Additionally, the review examines, on the one hand, criticism of the theory of resilience and, on the other hand, remaining questions in relation to the application of resilience, such as the system’s state after the disruption. The paper subsequently examines the application of the theory of resilience to different energy systems. The review concludes with an outlook on the possibility of operationalizing resilience for energy systems.
536 _ _ |a 153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)
|0 G:(DE-HGF)POF3-153
|c POF3-153
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Heinrichs, Heidi Ursula
|0 P:(DE-Juel1)145221
|b 1
|u fzj
700 1 _ |a Kuckshinrichs, Wilhelm
|0 P:(DE-Juel1)130467
|b 2
|u fzj
773 _ _ |a 10.1186/s13705-019-0210-7
|g Vol. 9, no. 1, p. 27
|0 PERI:(DE-600)2641015-1
|n 1
|p 27
|t Energy, Sustainability and Society
|v 9
|y 2019
|x 2192-0567
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/863780/files/Jesse_et_al-2019-Energy%2C_Sustainability_and_Society.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/863780/files/Jesse_et_al-2019-Energy%2C_Sustainability_and_Society.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:863780
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)172813
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145221
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130467
913 1 _ |a DE-HGF
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|2 G:(DE-HGF)POF3-100
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY SUSTAIN SOC : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21