000863805 001__ 863805
000863805 005__ 20220930130215.0
000863805 0247_ $$2doi$$a10.1038/s41598-019-47036-4
000863805 0247_ $$2Handle$$a2128/22543
000863805 0247_ $$2altmetric$$aaltmetric:63945904
000863805 0247_ $$2pmid$$apmid:31332226
000863805 0247_ $$2WOS$$aWOS:000476713900049
000863805 037__ $$aFZJ-2019-03792
000863805 082__ $$a600
000863805 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b0$$eCorresponding author$$ufzj
000863805 245__ $$aAdaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study
000863805 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000863805 3367_ $$2DRIVER$$aarticle
000863805 3367_ $$2DataCite$$aOutput Types/Journal article
000863805 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1564406437_13085
000863805 3367_ $$2BibTeX$$aARTICLE
000863805 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863805 3367_ $$00$$2EndNote$$aJournal Article
000863805 520__ $$aAdaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered permanently. Using a computational model of subthalamic nucleus and external globus pallidus, we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization. Additionally, we combine adaptive on-off delivery with continuous delayed feedback modulation by introducing adaptive pulsatile linear delayed feedback stimulation (apLDF), where cpLDF is turned on and off using pre-defined amplitude thresholds. By varying the stimulation parameters of cDBS, aDBS, cpLDF, and apLDF we obtain optimal parameter ranges. We reveal a simple relation between the thresholds of the local field potential (LFP) for aDBS and apLDF, the extent of the stimulation-induced desynchronization, and the integral stimulation time required. We find that aDBS and apLDF can be more efficient in suppressing abnormal synchronization than continuous simulation. However, apLDF still remains more efficient and also causes a stronger reduction of the LFP beta burst length. Hence, adaptive on-off delivery may further improve the intrinsically demand-controlled pLDF.
000863805 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000863805 588__ $$aDataset connected to CrossRef
000863805 7001_ $$0P:(DE-Juel1)131884$$aTass, Peter A.$$b1
000863805 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-47036-4$$gVol. 9, no. 1, p. 10585$$n1$$p10585$$tScientific reports$$v9$$x2045-2322$$y2019
000863805 8564_ $$uhttps://juser.fz-juelich.de/record/863805/files/30038661830009343697INVOIC2676150800001.pdf
000863805 8564_ $$uhttps://juser.fz-juelich.de/record/863805/files/30038661830009343697INVOIC2676150800001.pdf?subformat=pdfa$$xpdfa
000863805 8564_ $$uhttps://juser.fz-juelich.de/record/863805/files/s41598-019-47036-4.pdf$$yOpenAccess
000863805 8564_ $$uhttps://juser.fz-juelich.de/record/863805/files/s41598-019-47036-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863805 8767_ $$82676150800$$92019-07-10$$d2019-07-12$$eAPC$$jZahlung erfolgt$$pSREP-18-05942C
000863805 909CO $$ooai:juser.fz-juelich.de:863805$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000863805 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b0$$kFZJ
000863805 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000863805 9141_ $$y2019
000863805 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863805 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000863805 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863805 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863805 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000863805 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000863805 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863805 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863805 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000863805 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863805 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863805 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863805 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863805 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863805 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000863805 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863805 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863805 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000863805 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863805 920__ $$lyes
000863805 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000863805 980__ $$ajournal
000863805 980__ $$aVDB
000863805 980__ $$aUNRESTRICTED
000863805 980__ $$aI:(DE-Juel1)INM-7-20090406
000863805 980__ $$aAPC
000863805 9801_ $$aAPC
000863805 9801_ $$aFullTexts