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Adaptive delivery of continuous 
and delayed feedback deep brain 
stimulation - a computational study
Oleksandr V. Popovych1 & Peter A. Tass2

Adaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned 
on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered 
permanently. Using a computational model of subthalamic nucleus and external globus pallidus, 
we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but 
also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile 
linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization. 
Additionally, we combine adaptive on-off delivery with continuous delayed feedback modulation by 
introducing adaptive pulsatile linear delayed feedback stimulation (apLDF), where cpLDF is turned 
on and off using pre-defined amplitude thresholds. By varying the stimulation parameters of cDBS, 
aDBS, cpLDF, and apLDF we obtain optimal parameter ranges. We reveal a simple relation between the 
thresholds of the local field potential (LFP) for aDBS and apLDF, the extent of the stimulation-induced 
desynchronization, and the integral stimulation time required. We find that aDBS and apLDF can be 
more efficient in suppressing abnormal synchronization than continuous simulation. However, apLDF 
still remains more efficient and also causes a stronger reduction of the LFP beta burst length. Hence, 
adaptive on-off delivery may further improve the intrinsically demand-controlled pLDF.

High-frequency (HF) deep brain stimulation (DBS) is the standard therapy for the treatment of essential tremor, 
dystonia and Parkinson’s disease (PD)1–4. To overcome limitations of continuous HF DBS (cDBS), such as side 
effects, closed-loop and demand-controlled, adaptive DBS (aDBS) was tested in animal and clinical studies5–20. 
For this type of approach, stimulation is aimed to be administered only when necessary and to an extent depend-
ing on the measured neuronal activity or symptoms. One of the closed-loop approaches is based on an on-off 
strategy, where the stimulation is switched on and off when certain events are detected, for example, when a 
selected biomarker crosses a predefined threshold. Examples for trigger events or biomarkers were action poten-
tials recorded from the primary motor cortex6 or the amplitude of the beta-band local field potential (LFP) of 
the subthalamic nucleus (STN)7,14–16,18,20. Interestingly, aDBS could selectively reduce the duration of bursts of 
the beta-band LFP, where the prevalence of short (long) LFP bursts negatively (positively) correlated with motor 
impairment off stimulation19. By the same token, peripheral signals, reflecting peripheral tremor activity, were 
used to trigger HF DBS5,8,9 or to adapt the amplitude of HF DBS to the amplitude of the ongoing peripheral 
tremor17.

Instead of the on-off strategy discussed above, the stimulation intensity can also be adapted in real time to the 
amplitude of the biomarker signal13,17. To some extent the latter approach mimics closed-loop feedback methods 
that have been developed in the past for the control of abnormal neuronal synchronization, which is a hallmark 
of several neurological disorders, like PD21,22, essential tremor23, epilepsy24, and tinnitus25–27. For feedback con-
trol the mean field, e.g., the LFP of a synchronized population is measured, preprocessed (e.g., filtered, delayed, 
amplified, etc.) and fed back to the synchronized neuronal population as a stimulation signal28–38. Two desynchro-
nizing delayed feedback methods, single- and multi-site linear delayed feedback (LDF) and nonlinear delayed 
feedback (NDF) were recently adapted and computationally tested for electrical closed-loop DBS39–41. Since direct 
electrical stimulation of the neuronal tissue with smooth and slowly oscillating feedback signals may cause an 
irreversible charge deposit in the neuronal tissue exceeding safety limits2,42,43, the amplitude of the HF train of 
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charge-balanced pulses used by the standard HF DBS is modulated by the slow feedback signal, which constitutes 
a pulsatile feedback stimulation appropriate for electrical DBS39–41.

The main goal of this study is to investigate the impact of adaptive on-off delivery on both continuous as 
well as delayed feedback stimulation. For this, we study differential effects of cDBS and aDBS. Furthermore, to 
combine adaptive on-off delivery with continuous delayed feedback modulation, we here present a novel method 
for adaptive brain stimulation technique, adaptive pulsatile LDF (apLDF). To this end, continuous pulsatile LDF 
(cpLDF)39–41 is triggered by the extent of the abnormal neuronal synchrony in an on-off manner. In contrast, so 
far LDF was not delivered in an adaptive manner. To illustrate the performance of apLDF, we use a physiologi-
cally motivated model of interacting populations of STN and external globus pallidus (GPe) neurons suggested 
for modeling parkinsonian neuronal dynamics44,45. The reciprocally connected excitatory (STN) and inhibitory 
(GPe) neuronal populations may act as a pacemaker, resulting in the emergence of oscillatory activity in PD, as 
put forward based on pre-clinical studies46.

We compare the performance of apLDF, cpLDF, aDBS, and cDBS. It is key to understand the impact of stimu-
lation parameters on the stimulation outcome47. Accordingly, in this paper, for all stimulation techniques under 
study, we systematically vary the stimulation intensity, values of the LFP thresholds used to trigger onsets and off-
sets of the stimulation as well as the width of the gap between the phases of biphasic charge-balanced asymmetric 
stimulation pulses. Based on our computational results, aDBS can be at least as effective as cDBS in suppressing 
abnormal neuronal synchrony. The former can however utilize much less stimulation time such that it becomes 
much more efficient than cDBS and approaches characteristics of pulsatile LDF, especially, for an interphase 
gap of moderate width. However, for optimal parameters, apLDF requires less stimulation current in inducing 
desynchronization than aDBS. We also show that apLDF shortens LFP burst length significantly stronger than 
cpLDF. Hence, although HF DBS and pulsatile LDF are qualitatively different stimulation techniques, for apLDF 
vs. cpLDF our computational findings are in agreement with a hypothesis put forward for aDBS vs. cDBS, saying 
that adaptive stimulation reduces LFP burst length19. Furthermore, our computational results show that adaptive 
on-off delivery may further improve the intrinsically demand-controlled pLDF.

Methods
Model.  We consider a network of two neuronal populations, which models the dynamics of STN and GPe 
neurons. Each cell is described by the following system44:

′ = − − − − − − − + +C v I I I I I I I I I , (1)m L K Na T Ca AHP syn app stim
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In equations (1)–(3), v is a membrane potential of the neuron, the currents IL, IK, INa, IT, ICa, IAHP, Isyn, and Iapp 
are the corresponding leak, potassium, sodium, low threshold calcium, high threshold calcium, afterhyperpolari-
sation potassium, synaptic, and external current, respectively. [Ca] is the intracellular concentration of Ca2+ ions, 
and X = n, h, r are the gating variables.

The following currents from equation (1) attain the same form for both STN and GPe neurons:
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whereas current IT is given by different expressions for the excitatory STN cells and for the inhibitory GPe cells:
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where θ σ θ σ= + − − + −∞b r r( ) 1/(1 exp[( )/ ]) 1/(1 exp[ / ])b b b b . The functions ∞X v( ) and τ v( )X  used in equa-
tion (3) and in the above definition of the currents read
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For GPe neurons τ τ=v( )r r is a constant parameter.
In our study we consider two interacting populations of N = 200 STN and 200 GPe neurons on 1Dim lattices 

with periodic boundary conditions. Each STN neuron excites a single GPe neuron, whereas each GPe neuron 
inhibits three neighboring STN neurons, see Supplementary Fig. S1. Microscopic models of this type were intro-
duced and investigated in a number of papers39,40,44,45,48, where STN neurons receive an inhibitory input from 
GPe neurons and, in turn, give an excitatory output to the GPe network. The considered sparse and structured 
connectivity can support well-pronounced and stable synchronized patterns of the STN-GPe network44 as we 
show below, which will be controlled by an external stimulation. The coupling among the neurons is realized via 
synaptic currents Isyn defined in the following way:

∑ ∑= − = −→ → → →I g v v s I g v v sSTN: ( ) , GPe: ( ) ,syn G S G S j syn S G S G j
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for STN and GPe cells, respectively. j is the index of neurons and summations are taken over all presynaptic neu-
rons. The synaptic weights = .→g 0 4 nSS G /μm2 and = .→g 1 38 nSG S /μm2 reflect the strength of the coupling 
from STN neurons to GPe neurons, and in the opposite direction, respectively. The considered relatively strong 
GPe-STN coupling reflects the experimental finding reporting the strengthening of the GPe–STN pathway at the 
dopamine depletion characteristic for PD49 and leads to synchronized bursting dynamics of STN neurons. The 
reversal potentials =→v 0 mVS G  and = −→v 100 mVG S  reflect the excitatory coupling from STN to GPe neurons 
and inhibitory coupling from GPe to STN, respectively. The equation for the synaptic variables sj reads:

α θ β θ σ′ = − − − = + − − .∞ ∞s H v s s H x x( )(1 ) , ( ) 1/(1 exp[ ( )/ ]) (4)j j g j j g
H

g
H

We suppose that the neurons in the STN and GPe ensembles are nonidentical. For this, the applied currents 
=I I japp app,  for STN cells are Gaussian distributed with the mean 10 pA/μm2 and the standard deviation 0.015 

pA/μm2. The parameter ε ε= j for GPe neurons are also Gaussian distributed with the mean 0.0055 ms−1 and the 
standard deviation ⋅ − −2 10 ms5 1. The values of the other parameters for the STN and GPe neurons are listed in 
Supplementary Table S1.

Synchronized dynamics of STN neurons.  In this study we focus on the control of the collective synchro-
nized dynamics of the STN-GPe network (1)–(4). The extent of synchronization can be estimated by the order 
parameter50–52

∑ ψ= −

=
R t N i t( ) exp( ( )) ,
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where ψ t( )j  are the phases of individual neurons calculated from the neuronal bursting dynamics. The phase ψ t( )j  of the 
jth neuron attains the values ψ π=t n( ) 2j n , = …n 0, 1,  at the time moments tn of the burst onsets, i.e., the first spikes 
in the bursts, and linearly increases between two consecutive bursts ψ π π= − − ++t t t t t n( ) 2 ( )/( ) 2j n n n1  for 

∈ +t t t( , )n n 1 , = …n 0, 1, 53. The values of the order parameter R(t) range from 0 to 1 and correspond to the extent of 
in-phase synchronization in the population. Dynamics of the order parameter for the considered parameters of the 
stimulation-free synchronized STN neurons ( =I 0stim  in equation (1)) is illustrated in Fig. 1A (black curve). The order 
parameter fluctuates around ≈ .R 0 8, which indicates a relatively strong in-phase synchronization of STN neurons.

The extent of synchronization is also reflected by the amplitude of the local field potential (LFP) which we 
model as an ensemble-averaged synaptic activity of neurons = ∑−

=LFP t N s( ) j
N

j
1

1
54, where s t( )j  are the synaptic 

variables (4) of STN neurons, see also papers55,56 for a more sophisticated approach. The measured raw LFP(t) is 
on-line filtered by applying a linear damped oscillator

α ω+ + = .̈u u u k LFP t( ) (6)d
2

f

Parameter ω approximates the frequency of the LFP oscillations ω π= T2 / , where T is the mean period of the 
LFP. As the output signal of equation (6), that is the filtered LFP, we use the variable = x t u( ) , which has a zero 
phase shift with respect to the original LFP signal35. The damping and scaling coefficients in equation (6) were 
chosen as α = = .k 0 008d f  which approximately preserves the amplitude of the input raw LFP signal39. Dynamics 
of raw and filtered LFP of STN neurons without stimulation is illustrated in Fig. 1B (black and red curves). The 
neurons exhibit in-phase synchronization and burst nearly simultaneously [Fig. 1B, blue dots], which is accom-
panied by large-amplitude LFP oscillations.

For the considered parameters, STN bursting neurons synchronize at ≈10 Hz (the mean period of LFP oscil-
lations ≈T 103 ms) [Fig. 1B]. This frequency belongs to the frequency range 8–30 Hz which is referred to as basal 
ganglia beta frequency band, where an abnormal neuronal dynamics can be related to disease symptoms22,57,58. In 
particular, in parkinsonian monkeys the beta band extends to lower frequencies compared to in Parkinson’s 
patients21. The synchronization frequency is close to the low beta oscillatory range of 11–14 Hz, where the degree 
of synchronization suppression correlates with clinical motor improvement59. However, the considered model can 
also be used for computational investigation of other frequency bands, see Supplementary Fig. S2.

HF DBS.  During HF DBS, STN neurons are stimulated by a train of high-frequency electrical biphasic 
charge-balanced pulses2,60,61. Each pulse consists of cathodic and anodic phases which deliver the same charge of 
opposite polarity providing, in such a way, a charge-balanced stimulation. This results in zero net charge injection 
into the stimulated tissue after each short biphasic pulse and prevents from injury to nervous tissue2,42,43,62. We 
consider asymmetric biphasic charge-balanced stimulation pulses used for the standard HF DBS60,61, which con-
sist of a first short cathodic pulse (1st phase) followed by a longer charge-balancing 2nd phase of opposite polarity, 
see insert in Fig. 2A. We use the standard frequency of 130 Hz for the HF DBS pulse train (the inter-pulse interval 

≈ .1000/130 7 69 ms)60 and the width of the short pulse (1st phase) PW = 0.2 ms that relates to the duration of its 
long counterpart as 1: 10 [Fig. 2A], which is found to be energy efficient63.

The stimulation current Istim (in pA/μm2) in equation (1) consists of a HF train of the above pulses of unit 
amplitude of the recharging 2nd phase amplified by a factor A(t)

https://doi.org/10.1038/s41598-019-47036-4
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Figure 1.  Synchronized dynamics of the STN-GPe neuronal populations (1)–(4) and its suppression by 
continuous HF DBS. (A) Time courses of the order parameter R of STN neurons without stimulation ( =I 0stim  
in equation (1), upper black curve) and stimulated by cDBS for different widths of the interphase gap as 
indicated in the legend. The stimulation starts at =t 20 s as indicated by the vertical dashed line with parameter 
of the stimulation intensity =K 2. (B–E) Examples of raster spike plots of STN neurons (blue dots) for (B) 

=K 0 (no stimulation) and (C–E) =K 2 and interphase gap (C) =GW 0 ms, and (D) 2 ms, and (E) 5 ms. Black 
and red curves depict raw and filtered LFP, respectively, scaled by the factor 1000.
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Figure 2.  Stimulation signals of HF DBS and pulsatile delayed feedback. The amplitude of the high-frequency 
pulse train of charge-balanced asymmetric biphasic pulses (solid lines) is (A) kept constant and equal to the 
parameter of the stimulation intensity K for HF DBS stimulation or (B) modulated by a slowly oscillating 
smooth feedback signal S(t) (8) for pulsatile LDF stimulation depicted by red dashed curves. The shapes of 
single pulses are schematically illustrated in the inserts, which can contain an interphase gap between the 
cathodic and anodic phases of the pulse.
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for ∈ +t t t[ , )n n 1 , where =t n F1000 /n  ms, = …n 0, 1, 2,  are the times of the pulse onsets [Fig. 2A], and 
F = 130 Hz is the frequency of the stimulation pulse train (number of pulses per second) as mentioned above. For 
HF DBS the factor A(t) = K is a constant dimensionless parameter of the stimulation intensity. Each pulse can 
contain an interphase time gap of width GW between the cathodic and anodic phases of the biphasic pulses, see 
insert in Fig. 2B, see also refs 40,61,64,65. For the considered pulse frequency and pulse width, the width of the inter-
phase gap GW for charge-balanced pulses can range up to 5.49 ms, otherwise the recharging second phase of the 
pulses becomes too short to balance the charge imposed by the first pulse phase. For > .GW 7 49 ms the pulses 
turn to monophasic.

Pulsatile delayed feedback stimulation.  Neuronal synchronization of the considered model (1)–(4) can 
also be controlled by linear delayed feedback (LDF). This stimulation techniques has been suggested and investi-
gated in the papers28,29,36,39,40. The feedback stimulation signal S(t) is calculated as28,29,36,39,40

τ= ⋅ − −S t K x t x t( ) ( ( ) ( )), (8)

where the signal = x t u( )  is from equation (6) and represents the filtered LFP. Parameter K is a dimensionless 
feedback gain and, as before, will be referred to as parameter of the stimulation intensity, and τ is the stimulation 
delay.

Electrical stimulation of the brain with such a smooth signal might cause an irreversible charge deposit in the 
vicinity of the electrode and lead to a damage of the neuronal tissue2,42,43. This problem can be resolved as sug-
gested in the recent papers39,40. We use the above high-frequency pulse train of biphasic charge-balanced pulses 
utilized for the standard HF DBS, whose amplitude is modulated by the slowly oscillating feedback signals S(t) as 
schematically illustrated in Fig. 2B, where an example of the pulsatile stimulation current Istim in equation (1) of 
pulsatile LDF is shown. In equation (7) the amplification factor =A t S t( ) ( ) in this case. We refer to the stimula-
tion with such pulse trains modulated by the smooth LDF signal S(t) as pulsatile LDF stimulation39,40.

Demand-controlled adaptive stimulation.  Together with continuous stimulation, where the stimula-
tion signal is continuously delivered to the stimulated neurons, we also model a demand-controlled, adaptive 
stimulation, where the neurons are stimulated to the extent and when necessary in an intermittent way. Such a 
closed-loop stimulation can be adapted, for example, to the amount of the ongoing abnormal neuronal activ-
ity7,13,15, e.g., to the extent of synchronization of the stimulated neuronal population. Following clinical 
approaches7,15, the stimulation can intermittently be switched on and off, where the onsets and offsets of the 
stimulation can, e.g., be triggered by a threshold crossing by the local field potential (LFP) measured via the 
implanted electrode. We thus apply such an approach to the considered model of the STN-GPe neuronal network. 
We introduce two threshold values Thon (upper threshold or on-threshold) and Thoff (lower threshold or 
off-threshold) with ≥Th Thon off  for the amplitude of the LFP. The stimulation will be switched on when the local 
maxima of the oscillating filtered LFP exceed the upper threshold Thon, and the stimulation will be switched off by 
setting the parameter of the stimulation intensity to =K 0, when the LFP local maxima fall below the lower 
threshold Thoff. We simulate and systematically compare continuous and adaptive HF DBS (cDBS and aDBS) as 
well as continuous and adaptive pulsatile LDF (cpLDF and apLDF) when the stimulation parameters such as 
stimulation intensity K, delay τ, the width of the interphase gap GW and the LFP thresholds vary. For each con-
dition and parameters we average the values of the calculated quantities (order parameter, stimulation time, 
amount of the administered stimulation etc., see below) over time after skipping a long enough transient as well 
as over several different simulations running with slightly different stimulation parameters. For the latter averag-
ing we consider a few (10–20) slightly different time intervals ∈T [0, 2000] msramp , where, at the stimulation 
onset, the parameter of the stimulation intensity K linearly increases from 0 to the corresponding indicated value, 
i.e., the stimulation intensity is linearly ramped up over slightly different ramping time intervals.

Results
We compare the desynchronizing impact of the continuous and adaptive HF DBS to each other and to that of 
pulsatile LDF. The continuous smooth and pulsatile LDF administered to synchronized STN neurons has been 
investigated in refs 39–41 together with smooth and pulsatile nonlinear delayed feedback (NDF). In this paper the 
main attention is paid to suppression of synchronization by cDBS, aDBS, and apLDF.

Adaptive HF DBS.  The continuous and adaptive HF DBS is administered to synchronized STN population, 
where the neurons burst nearly simultaneously and exhibit a well-pronounced in-phase synchronization, see the 
raster spike plot in Fig. 1B. The order parameter fluctuates around a large value 〈 〉 ≈ .R 0 8 [Fig. 1A, black curve], 
and the LFP demonstrates large-amplitude oscillations [Fig. 1B, black and red curves]. Stimulation of the syn-
chronized STN neurons by cDBS with the permanently delivered HF pulse train [Fig. 2A] of large enough stimu-
lation intensity K can suppress the synchronization of STN neurons. During the stimulation, the order parameter 
R exhibits small values [Fig. 1A, red, green and blue curves], and the in-phase firing of the STN neurons is 
destroyed [Fig. 1C–E, blue dots], which is accompanied by a reduction of the LFP amplitude [Fig. 1C–E, black 
and red curves].

https://doi.org/10.1038/s41598-019-47036-4
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The desynchronizing impact of HF DBS depends on the stimulation parameters as illustrated in Fig. 3. 
Stronger stimulation can lead to a stronger desynchronization [Fig. 3A], and introducing an interphase gap may 
improve the desynchronizing impact of cDBS. For example, cDBS with gap width =GW 2 ms [Fig. 3A, green 
squares] can induce stronger desynchronization for a range of parameter K as compared to cDBS without gap 
[Fig. 3A, red circles]. Too large an interphase gap may not necessarily lead to an enhancement of desynchroniza-
tion, see Fig. 3A for =GW 5 ms (blue triangles). As follows from the two-parameter diagram in Fig. 3B, there 
exists an optimal interphase gap, where, for fixed stimulation intensity K, cDBS can induce strongest desynchro-
nization. On the other hand, synchronization can be suppressed for smaller K as it increases for an optimal gap. 
The considered gap =GW 2 ms is close to such an optimal value. Interestingly, the desynchronization region 
[Fig. 3B, blue domain] has a similar shape as the entrainment region of a single model neuron by pulses with gap 
in the presence of noise65. In our model such an entrainment manifests itself for large gap, where the pulses 
approach a monophasic shape, and stimulated neurons get synchronized by the stimulation [Fig. 3B, red domain].

The impact of aDBS on the collective dynamics of STN neurons is illustrated in Fig. 4. As explained in the 
Methods, during the adaptive stimulation the LFP is measured and filtered, and the stimulation is switched on and 
off if the values of the local maxima of the filtered LFP [Fig. 4A–C, green curves] exceed the upper threshold Thon 
or fall below the lower threshold Thoff as illustrated by the red stepwise curves in Fig. 4A–C. The order parameter 
R [Fig. 4A–C, blue curves] closely follows the time course of the LFP amplitude if the former is scaled appropri-
ately (by the factor 1/25 in this case) and demonstrates much smaller values as compared to the stimulation-free 
case [Fig. 4A–C, horizontal blue dashed lines]. We thus observe that such a stimulation strategy can result in 
synchronization suppression in the stimulated neuronal population in spite of an intermittent administration of 
the stimulation, where the stimulation time is significantly reduced.

As for the case of cDBS [Figs 1 and 3], introducing an interphase gap of an intermediate width can enhance the 
desynchronizing effect of aDBS, compare Fig. 4A for =GW 0 ms to Fig. 4B for =GW 2 ms. Interestingly, such 
an improvement of the stimulation outcome is obtained at a substantial reduction of the stimulation time Ton that 
is the fraction of time, where the stimulation was switched on during aDBS. For example, for = .K 1 2, the aver-
aged order parameter 〈 〉 ≈ .R 0 33 at ≈ .T 0 63on  for =GW 0 ms in Fig. 4A and 〈 〉 ≈ .R 0 29 at ≈ .T 0 38on  for 

=GW 2 ms in Fig. 4B. For stronger stimulation, for example, for =K 2 and =GW 2 ms, the order parameter can 
reach smaller values 〈 〉 ≈ .R 0 24 obtained at even smaller stimulation time ≈ .T 0 14no  [Fig. 4C].

We compare the desynchronizing impact of aDBS and cDBS by varying the stimulation intensity K  and plot 
the averaged order parameter 〈 〉R  of the STN neurons stimulated by aDBS and cDBS in Fig. 4D–F versus param-
eter K . For the considered LFP thresholds = .Th 0 016on  and = .Th 0 008off , we found that the extent of the 
aDBS-induced desynchronization can approach that one induced by cDBS [Fig. 4D–F]. The desynchronization 
induced by aDBS can however be achieved at a much smaller amount of the stimulation time Ton as compared to 
cDBS [Fig. 4D–F, black diamonds], and a moderate interphase gap can strongly reduce Ton. Too large an inter-
phase gap may however not necessarily lead to an enhancement of the aDBS-induced desynchronization and a 
further decrease of the stimulation time [Fig.  4F]. For smaller LFP thresholds, e.g., for identical 

= = .Th Th 0 01on off , the aDBS-induced desynchronization can further be improved, and the order parameter 
nearly coincides with that induced by cDBS, especially, for the case of the interphase gap of intermediate width, 
see Supplementary Fig. S3. For such an optimal interphase gap also the amount of the stimulation time Ton is 
minimal as compared to other gaps [Fig. 4D–F and Supplementary Fig. S3].

The impact of aDBS on the synchronized dynamics of STN neurons depends on the LFP thresholds Thon and 
Thoff  as illustrated in Fig. 5. As a general tendency, when the LFP thresholds increase, the averaged order param-
eter 〈 〉R  and, thus, the amount of the residual synchronization also increases. On the other hand, the fraction of 
the stimulation time Ton decreases at the same time. The neurons stimulated by aDBS are thus less desynchronized 
for large thresholds, but there exists a parameter range of small LFP thresholds, where aDBS suppresses the neu-
ronal synchronization to the extent of cDBS or even slightly better [Fig. 5, cf. 〈 〉R  for aDBS and cDBS]. For such 
parameters, however, aDBS is much more efficient in inducing desynchronization because a given extent of 

Figure 3.  Impact of stimulation parameters on suppression of synchronization in the STN-GPe neuronal 
populations (1)–(4) by continuous HF DBS. (A) Averaged order parameter 〈 〉R  versus stimulation intensity K 
for different interphase gaps as indicated in the legend. For zero gap the standard deviation of the order 
parameter fluctuations (plot (A), red curve) is indicated by error bars. (B) 〈 〉R  depicted in color versus K and gap 
width GW. The vertical black line indicates the maximal value of ≈ .GW 5 49 ms for charge-balanced 
stimulation pulses.
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desynchronization can be obtained at a much smaller amount of the stimulation time (Ton is smaller than 1) and, 
thus, for much smaller amount of the administered stimulation current.

Adaptive pulsatile linear delayed feedback.  Examples of desynchronization by apLDF are illustrated in 
Fig. 6A–C for fixed stimulation intensity =K 10 and delay τ = 60 ms and for three widths of the interphase gap. 
For the considered parameters, the apLDF stimulation with the pulses containing an interphase gap [Fig. 2B] can 
have an enhanced desynchronizing impact on the stimulated neurons as compared to the case of zero gap. The 
order parameter 〈 〉R  (and amplitude of the LFP) and the stimulation time Ton are better suppressed for larger gap. 
For example, 〈 〉 ≈ .R 0 41 at ≈ .T 0 95on  for =GW 0 ms [Fig. 6A], 〈 〉 ≈ .R 0 32 at ≈ .T 0 67on  for =GW 2 ms 
[Fig. 6B], and 〈 〉 ≈ .R 0 29 at ≈ .T 0 5on  for =GW 5 ms [Fig. 6C].

The averaged order parameter 〈 〉R  of the STN neurons stimulated by apLDF and cpLDF is depicted versus 
stimulation delay τ  for fixed intensity =K 10 in Fig. 6D–F for comparison. Two sets of the LFP thresholds for 
apLDF are considered, = .Th 0 016on  and = .Th 0 008off , and = = .Th Th 0 01on off , indicated as “apLDF 1” and 
“apLDF 2” in the legend, respectively. In the desynchronization regions, where the order parameter exhibits 
smaller values as compared to the stimulation-free case [Fig. 6D–F, black dashed lines], both cpLDF [Fig. 6D–F, 
red solid curves] and apLDF [Fig. 6D–F, green squares and blue triangles] stimulations induce stronger desyn-
chronization as the width of the interphase gap increases. Moreover, a larger gap also leads to a substantial 
decrease of the stimulation time Ton for apLDF [Fig. 6D–F, black diamonds and magenta asterisks], as already 
mentioned above. Therefore, introducing an interphase gap in the stimulation pulses can lead to a stronger desyn-
chronization by apLDF and to a simultaneous reduction of the stimulation time, and this effect gets more pro-
nounced for larger gap. For the considered parameters, the extent of desynchronization induced by apLDF and 
cpLDF stimulations can be very close to each other [Fig. 6D,E]. However, the difference between them can get 
more pronounced if cpLDF-induced desynchronization is strong as, for example, for =GW 5 ms in Fig. 6F. 
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Figure 4.  Suppression of synchronization in the STN-GPe neuronal populations (1)–(4) by adaptive HF DBS. 
(A–C) Time courses of the filtered LFP (green curves) and the order parameter 〈 〉R  (blue curves, scaled by the 
factor 1/25) of STN neurons stimulated by aDBS started at =t 20 s for the interphase gap (A) =GW 0 ms and 
(B,C) =GW 2 ms and stimulation intensity (A,B) = .K 1 2 and (C) =K 2. The scaled value of 〈 〉R  of the 
synchronized and stimulation-free STN neurons [Fig. 1A, black curve, and Fig. 3A for =K 0] is indicated by 
horizontal blue dashed lines for comparison. The red stepwise curves indicate the on- and off-epochs of aDBS 
for the LFP thresholds = .Th 0 016on  (upper value of the red stepwise curves) and = .Th 0 008off  (black 
horizontal line). (D–F) Averaged order parameter 〈 〉R  versus stimulation intensity K for aDBS (filled symbols) 
and cDBS (dashed curves, copied from Fig. 3A for comparison) as indicated in the legends for the interphase 
gap (D) =GW 0 ms, (E) 2 ms, and (F) 5 ms. The standard deviation of the order parameter fluctuations for 
aDBS is indicated by error bars. The fraction of the stimulation time Ton (black diamonds) of aDBS, where HF 
DBS was switched on, and its smoothed values (black dotted curves) are also shown.
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Smaller LFP thresholds can further enhance the apLDF-induced desynchronization, but this can be achieved for 
a longer stimulation (larger Ton) as illustrated in Fig. 6E,F, compare the cases “apLDF 1” and “apLDF 2”.

As follows from Fig. 6D–F, apLDF has the same structure of the τ K( , )-parameter space as cpLDF reported in 
refs 39,40, where the desynchronization regions of small values of 〈 〉R  periodically appear in the parameter space as 
τ  increases with approximately mean LFP period ≈T 103 ms of the synchronized stimulation-free neuronal 
ensemble as also found for other models28,29,36. For further analysis we fix a representative value of an optimal 
delay τ = 60 ms (close to T/2) for strong desynchronization [Fig. 6D–F]. For fixed stimulation intensity =K 10 
and τ = 60 ms, the impact of the LFP thresholds on the desynchronizing outcome of apLDF is illustrated in 
Fig. 7A in more detail. We found that there is an apparent interdependency between the LFP thresholds, the 
extent of the stimulation-induced desynchronization as reflected by values of the order parameter 〈 〉R  [Fig. 7A, 
filled symbols], and stimulation time Ton [Fig. 7A, empty symbols]. For larger LFP thresholds the stimulation with 
apLDF induces a weaker desynchronization (〈 〉R  increases), but this requires less stimulation time (Ton decreases). 
On the other hand, if the LFP thresholds are small, apLDF better suppresses the neuronal synchronization which 
approaches the extent of desynchronization induced by cpLDF [Fig. 7A, dashed lines]. At this, the stimulation 
time increases toward =T 1on  that corresponds to the case of continuous stimulation. Depending on the clinical 
needs and conditions, one could select the corresponding LFP thresholds to obtain the desirable extent of the 
stimulation-induced desynchronization as well as the amount of the stimulation time.

The discussed effects of the LFP thresholds are similar to both apLDF and aDBS techniques, see Figs 5 and 7A. 
For apLDF, larger interphase gap consistently leads to an enhancement the stimulation outcome [Fig. 7A], which 
may however not be the case for aDBS for too large an interphase gap [Fig. 5]. Another difference refers to the 
amount of the stimulation current administered to the stimulated neurons. In the case of aDBS it is directly pro-
portional to the amount of the stimulation time for fixed stimulation intensity and will decay together with the 
stimulation time as LFP thresholds increase [Fig. 5]. For apLDF the situation is more complex since the amount 
of the administered stimulation calculated as time-averaged absolute value 〈| |〉S  of the feedback signal (8) used for 
modulation of the pulse amplitude [Fig. 2B] is proportional to both the LFP amplitude (extent of the 
stimulation-induced desynchronization) and the amount of the stimulation time Ton. As LFP thresholds increase, 
the LFP amplitude increases together with the order parameter [Fig. 7A, filled symbols], whereas the amount of 
the stimulation time decreases [Fig. 7A, empty symbols]. Nevertheless, we found that for apLDF the amount of 
the administered stimulation 〈| |〉S  monotonically decays together with the stimulation time as the LFP thresholds 
increase, see Fig. 7B.
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Figure 5.  Impact of aDBS on the collective dynamics of STN-GPe neurons (1)–(4) for different LFP thresholds. 
The averaged order parameter 〈 〉R  (filled red circles, green squares and blue triangles) and fraction of the 
stimulation time Ton (black diamonds) are plotted versus the lower LFP threshold Thoff. The upper threshold is 
either fixed at (A–C) = .Th 0 016on  or (D–F) varied together with the lower threshold such that =Th Thon off . 
The standard deviation of the order parameter fluctuations is indicated by error bars. The horizontal dashed 
lines indicate the corresponding values of the order parameter 〈 〉R  obtained by cDBS, see Fig. 3A for = .K 1 2. 
Interphase gap (A,D) =GW 0 ms, (B,E) 2 ms, and (C,F) 5 ms. The stimulation intensity = .K 1 2.
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Figure 6.  Suppression of synchronization in the STN-GPe neuronal populations (1)–(4) by apLDF. (A–C) Time 
courses of the filtered LFP (green curves) and the order parameter 〈 〉R  (blue curves, scaled by the factor 1/25) of 
STN neurons stimulated by apLDF started at =t 20 s for the widths of the interphase gaps (A) =GW 0 ms, (B) 
2 ms, and (C) 5 ms. The scaled value of 〈 〉R  of the synchronized and stimulation-free STN neurons [Figs 1A, 
black curve, and 3A for =K 0] is indicated by horizontal blue dashed lines for comparison. The red stepwise 
curves indicate the on- and off-epochs of apLDF for the LFP thresholds = .Th 0 016on  (upper value of the red 
stepwise curves) and = .Th 0 008off  (black horizontal line). Parameters of the stimulation intensity =K 10 and 
delay τ = 60 ms. (D–F) Averaged order parameter 〈 〉R  versus stimulation delay τ for apLDF and cpLDF as 
indicated in the legend for the interphase gap (D) =GW 0 ms, (E) 2 ms, and (F) 5 ms. The fraction of the 
stimulation time Ton of apLDF, where the stimulation was switched on is also shown. The horizontal dashed 
lines indicate the order parameter 〈 〉R  of the stimulation-free STN neurons. Stimulation intensity =K 10, and 
the LFP thresholds = .Th 0 016on  and = .Th 0 008off  for the case 1 (indicated as “apLDF 1” in the legend) and 

= = .Th Th 0 01on off  for the case 2 (indicated as “apLDF 2” in the legend). The standard deviation of the order 
parameter fluctuations in the latter case is indicated by error bars.
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Figure 7.  Desynchronization of STN-GPe neurons (1)–(4) by apLDF for different LFP thresholds. (A) The 
averaged order parameter 〈 〉R  (filled symbols) of the STN neurons stimulated by apLDF and fraction of the 
stimulation time Ton (empty symbols) are depicted versus the LFP thresholds =Th Thoff on for different widths 
of the interphase gap as indicated in the legends. For zero gap the standard deviation of the order parameter 
fluctuations is indicated by error bars. The horizontal dashed lines indicate the corresponding values of the 
order parameter 〈 〉R  induced by cpLDF, see Fig. 6D–F (red solid curves) for τ = 60 ms. (B) Amount of 
stimulation 〈| |〉S  administered by apLDF from plot (A), where the dashed lines indicate 〈| |〉S  for cpLDF. 
Stimulation intensity =K 10 and delay τ = 60 ms.
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Increasing stimulation intensity K can lead to a more pronounced desynchronization induced by apLDF and 
cpLDF as illustrated in Fig. 8A, where the order parameter decays as parameter K increases. For apLDF and fixed 
LFP thresholds, the order parameter saturates at some value for large K [Fig. 8A, filled symbols]. The stimulation 
time Ton, however, further decreases for large stimulation intensity. Based on such a behavior of the order param-
eter and simulation time, the amount of the stimulation administered by apLDF remains bounded in spite of 
increasing stimulation intensity and demonstrates a non-monotonic behavior as illustrated in Fig. 8B. Moreover, 
for the same large enough values of K, the apLDF stimulation delivers less stimulation current as compared to 
cpLDF stimulation, see Fig. 8B.

To evaluate and illustrate the efficiency of apLDF and cpLDF in inducing desynchronization, we plot in Fig. 8C 
the amount of the administered stimulation 〈| |〉S  versus the extent of the reached stimulation-induced desynchro-
nization as given by the values of the averaged order parameter 〈 〉R . For cpLDF [Fig. 8C, dashed curves] stronger 
desynchronization (smaller 〈 〉R ) can be obtained for larger amount of the stimulation, whereas the latter can sig-
nificantly be reduced by introducing and increasing an interphase gap in the stimulation pulses. Utilizing the 
discussed on-off strategy for apLDF can further diminish the amount of the stimulation necessary to obtain a 
given level of desynchronization such that 〈| |〉S  starts to decay together with the order parameter [Fig. 8C, solid 
curves with symbols]. The order parameter 〈 〉R  can however be bounded to some moderate values since is satu-
rates with increasing stimulation intensity K for fixed LFP thresholds [Fig. 8A]. Therefore, apLDF can be very 
efficient in inducing a moderate desynchronization, while the LFP thresholds have to be reduced or the stimula-
tion can be switched to a conventional cpLDF when a much stronger desynchronization is required.

The efficiency of aDBS and conventional cDBS in suppressing synchronization is illustrated in Fig. 8D, where, 
by analogy with LDF stimulation, the amount of the administered stimulation 〈| |〉S  is calculated from the signal 

=S t K( )  which is used to modulate/define the amplitude of the stimulation pulses [Fig. 2A] similar to the feed-
back stimulation with oscillating signal S(t) [Fig. 2B]. The conventional cDBS administers much more stimulation 
current to obtain a given extent of desynchronization as compared to cpLDF, compare dashed curves in Fig. 8C,D 
(notice the difference in scaling by vertical axes). Introducing an interphase gap of a moderate width may be 
beneficial for the stimulation efficiency of cDBS, compare dashed red curve for =GW 0 ms to the dashed green 
curve for =GW 2 ms in Fig. 8D. Too large a gap, however, may not necessarily lead to a more efficient desynchro-
nization [Fig. 8D, dashed blue curve for =GW 5 ms]. The on-off aDBS can induce at least the same extent of 
desynchronization as cDBS, but for much smaller amount of the administered stimulation [Fig. 8D, solid curves 
with symbols]. This is especially well pronounced for the interphase gap of moderate width, for example, for 

=GW 2 ms [Fig. 8D, green squares]. For such parameters the efficiency of aDBS may approach that of pulsatile 
LDF, albeit aDBS still remains less efficient than pulsatile LDF. For instance, to obtain desynchronization with 

Figure 8.  Stimulation outcome of the apLDF stimulation and aDBS administered to STN-GPe neurons (1)–(4). 
(A,B) The averaged order parameter 〈 〉R  of the STN neurons stimulated by apLDF, fraction of the stimulation 
time Ton and amount of stimulation 〈| |〉S  administered by apLDF versus parameter K of the stimulation intensity 
for different widths of the interphase gap as indicated in the legends. Dashed thin curves of the same color 
depict the corresponding values of (A) the order parameter 〈 〉R  and (B) administered amount of stimulation 
〈| |〉S  of cpLDF. For zero gap the standard deviation of the order parameter fluctuations is indicated by error bars. 
(C,D) Administered amount of stimulation 〈| |〉S  versus the reached extent of the stimulation-induced 
desynchronization as given by values of 〈 〉R  for (C) apLDF stimulation and (D) aDBS for the interphase gaps 
indicated in the legends. Results for conventional cpLDF and cDBS are depicted by dashed curves of the 
corresponding color. Stimulation delay τ = 60 ms, and LFP thresholds = = .Th Th 0 01on off .
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〈 〉 ≈ .R 0 24, cpLDF and apLDF require 〈| |〉 ≈ .S 0 08 and 0.06 for =GW 5 ms, respectively, whereas the smallest 
amount of the stimulation for cDBS and aDBS 〈| |〉 ≈ .S 1 0 and 0.5 for =GW 2 ms, respectively. For stronger 
desynchronization with 〈 〉 ≈ .R 0 17 obtained by aDBS for =GW 2 ms in Fig. 8D (green squares), the amount of 
the administered stimulation 〈| |〉 ≈ .S 0 27 for aDBS (2.0 for cDBS), whereas 〈| |〉 ≈ .S 0 34, 0.15, and 0.085 for 
cpLDF for GW = 0 ms, 2 ms, and 5 ms, respectively. aDBS can thus be a much more efficient stimulation technique 
for suppression of abnormal neuronal synchronization as compared to the conventional HF DBS. The stimulation 
efficiency can further be enhanced when pulsatile feedback techniques (cpLDF or apLDF) is used for 
desynchronization.

Dynamics of the LFP amplitude.  Along with synchronization suppression by cDBS and aDBS and reduc-
tion of the LFP amplitude [Figs 1, 3–5], the dynamics of the LFP undergoes additional modification, which is 
illustrated in Fig. 9. We found that LFP fluctuations start to exhibit many short bursts as the stimulation intensity 
increases, see Fig. 9A,B. To detect such bursts, we proceed as suggested in the recent paper19 and define a burst 
threshold being a 75-percentile of the LFP amplitude variation. Then the burst onset is detected at the time 
moment of the upward crossing of this threshold by the LFP amplitude. Since the values of the order parame-
ter R(t) closely approximate the variation of the LFP amplitude [Figs 4A–C, 6A–C and 9A,B], we use the time 
courses of R(t) for such calculations. To ameliorate an overestimation of the number of short bursts that could be 
detected due to small noisy fluctuations of the order parameter, we smoothed the time courses of R(t) by using a 
moving average over 400 ms with the step of 10 ms and introduce a lower threshold of 65-percentile as well. Then 
the onsets and offsets of the LFP bursts were detected when the smoothed time signal of the order parameter 
[Fig. 9A,B, blue curves] crosses the upper and lower thresholds which are its 75- and 65-percentiles [Fig. 9A,B, 
black dashed lines], respectively.

The LFP dynamics induced by aDBS and cDBS apparently demonstrates a tendency toward a prevalence of 
short bursts when the stimulation gets stronger as illustrated in Fig. 9C,D. The mean and median of the burst 
length decay as parameter K increases and can show either a rather pronounced fast transition at a certain critical 
stimulation intensity as for zero interphase gap [Fig. 9C] or gradually decrease as for the gap width =GW 2 ms 
[Fig. 9D]. Based on our simulations of the considered model, the behavior and properties of the LFP bursts 
appear to be similar for both stimulation modalities, where cDBS can cause slightly shorter bursts than aDBS, 
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Figure 9.  Modulation of the amplitude dynamics of STN LFP by HF DBS. (A,B) Time courses of the filtered 
LFP (green curves) and the smoothed order parameter R (blue curves) of STN neurons (1)–(4) stimulated by 
aDBS with the interphase gaps =GW 0 ms and stimulation intensity (A) = .K 0 5 and (B) = .K 1 5. The values 
of the order parameter are scaled by the factor 1/25. The stimulation starts at =t 20 s. The red stepwise curve 
indicates the on- and off-epochs of aDBS. The LFP thresholds for aDBS = = .Th Th 0 01on off  (upper value of the 
red stepwise curves). The black dashed lines indicate the 65-percentile of the order parameter time variation 
starting from =t 50 s. (C,D) Mean and median values of the LFP burst length versus parameter of the 
stimulation intensity K for cDBS and aDBS as indicated in the legend (BL stands for “burst length”) and for the 
interphase gap (C) =GW 0 ms and (D) 2 ms. (E–G) Examples of the LFP burst length distribution for cDBS 
and aDBS illustrated by frequency histograms for two values of K and GW, as indicated in the legends.
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especially, for large K and non-zero gap. The difference between the mean and median of the burst lengths is also 
similar for cDBS and aDBS, which indicates a relatively strong asymmetry in their distributions. Indeed, the dis-
tribution histograms are skewed toward long bursts as illustrated in Fig. 9E–G. For stronger stimulation the LFP 
bursts distribute more densely near short bursts such that the relative number of the bursts shorter than, for 
example, 5 s increases from 54% to 79% for cDBS [Fig. 9E] and from 52% to 81% for aDBS [Fig. 9F] when K grows 
from 0.5 to 1.5. For the case of non-zero gap =GW 2, the situation is similar, where approximately 80% and 73% 
of the LFP bursts are shorter than 5 s for cDBS and aDBS, respectively, for = .K 1 5 [Fig. 9G]. We thus showed that 
aDBS and cDBS can significantly shorten the LFP bursts, which may have a therapeutic effect as discussed in 
ref. 19.

For pulsatile LDF stimulation the situation is similar, where stronger stimulation with larger intensity K also 
shortens the LFP bursts as illustrated in Fig. 10. The main difference to HF DBS is however that apLDF stimula-
tion induces shorter LFP bursts than cpLDF [Fig. 10], which is statistically significant with < .p 0 001 for >K 32 
at =GW 0 ms, >K 14 at =GW 2 ms, and >K 8 at =GW 5 ms, see Supplementary Fig. S5. Moreover, the dis-
tributions of the burst length become more symmetrically localized at short bursts as K increases, where the mean 
and median values approach each other [Fig. 10A,B], especially, for apLDF stimulation and large interphase gap 
[Fig. 10C–E].

Discussion
In this computational study we investigated the desynchronizing effects of different continuous and adaptive 
stimulation techniques, cDBS, aDBS, cpLDF, and apLDF, on excessively synchronized populations of STN-GPe 
model neurons. Desynchronization might matter for the following reason. Prior to the first aDBS approaches5–20, 
a number of closed-loop demand-controlled desynchronizing DBS techniques were developed computation-
ally66–68. Taking into account spike timing-dependent plasticity (STDP)69,70 it was computationally shown that 
desynchronizing coordinated reset (CR) stimulation may shift networks from attractors with strong synaptic con-
nectivity and strong neural synchrony to attractors with weak synaptic connectivity and weak synchrony71–73. The 
same desynchronizing stimulation technique (CR-DBS) caused long-lasting therapeutic effects in parkinsonian 
monkeys74,75 as well as in Parkinson’s patients with CR-DBS58. In contrast, therapeutic effects of cDBS vanish after 
cessation of stimulation in both parkinsonian MPTP monkeys74,75 and PD patients76,77. Together with cDBS and 
aDBS we therefore considered pulsatile LDF stimulation39–41 that, unlike cDBS, was initially designed to counter-
act synchronization by desynchronization28,29,36.

We studied how the performance of the considered stimulation techniques depends on parameters and, in 
particular, showed that increasing stimulation intensity K leads to a stronger suppression of the abnormal neu-
ronal synchronization by cDBS and aDBS [Figs 3 and 4]. At this a required clinical effect (RCE) can be achieved 
at some value of K, which is a lower boundary value of the stimulation intensity of the therapeutic window as 
known from clinical results78. For example, a 50% reduction of the beta-band LFP amplitude could be sufficient 
for a satisfactory clinical effect7,15,19. Introducing an interphase gap of moderate width of, e.g., 2 ms to the stimu-
lation pulses can widen the therapeutic window by decreasing its lower boundary from ≈K 1 for zero gap to 

≈ .K 0 6 for the gap width =GW 2 ms [Fig. 3A]. The same conclusion can be made for aDBS, where an inter-
phase gap of moderate width and stronger stimulation could also lead to a shorter stimulation time [Fig. 4 and 
Supplementary Fig. S3]. The LFP amplitude thresholds used for triggering aDBS are also important parameters. 
At smaller thresholds aDBS tends to induce better desynchronization [Figs 4, 5 and Supplementary Fig. S3] such 
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Figure 10.  Modulation of the amplitude dynamics of STN LFP by pulsatile LDF administered to STN-GPe 
neurons (1)–(4). (A,B) Mean and median values of the STN LFP burst length versus stimulation intensity K for 
cpLDF and apLDF as indicated in the legend (BL stands for “burst length”) and for the interphase gap (A) 

=GW 0 ms and (B) 2 ms. (C,D) Examples of the LFP burst length distribution for cpLDF and apLDF illustrated 
by frequency histograms for =K 40 and three values of GW, as indicated in the legends. LFP thresholds for 
apLDF = = .Th Th 0 01on off  and stimulation delay τ = 60 ms.
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that aDBS can be at least as effective as cDBS or even better. In our model enhanced desynchronization for smaller 
thresholds, however, requires more stimulation time such that optimal values of parameters could be selected 
based on a trade-off between stronger desynchronization and shorter stimulation time. Again, an interphase gap 
of moderate width is favorable and enables a stronger desynchronization for smaller stimulation time compared 
to the case of zero gap [Figs 4, 5 and Supplementary Fig. S3].

The mechanism and the beneficial effect of the interphase gap can be explained based on the modeling and 
experimental results43,65,79 showing that it can reduce the counteracting impact of the recharging phase on the 
stimulation effect induced by the first phase of the pulses. Hence, this mechanism appears to be model inde-
pendent and, as we showed, governs the enhancement of the stimulation-induced desynchronization when an 
interphase gap is introduced in the stimulation pulses. We observe a similar favorable effect when the duration 
of the recharging phase increases, as illustrated in Supplementary Fig. S4. This results in a larger difference in 
the amplitudes of the two phases of the stimulation pulses and reduces the counteracting effect of the second, 
recharging pulse phase as in the case of the interphase gap, in agreement with other studies43,65,79.

We computationally compared aDBS/cDBS with apLDF/cpLDF. For apLDF we observed the same threshold 
dependence as for aDBS: The extent of the apLDF-induced desynchronization approaches the cpLDF level for 
small LFP thresholds [Fig. 7]. At this, however, the relative stimulation time may quickly reach values close to 
100%, which turns apLDF to cpLDF. We also estimated the amount of the stimulation current administered by 
adaptive stimulation, which depends on the stimulation time. For aDBS the amount of administered stimulation 
is simply proportional to the average stimulation time. For apLDF the situation is more complex, because the 
feedback signal (8) also depends on the LFP signal. Nevertheless, we found that the amount of the stimulation 
decays together with the stimulation time as the LFP thresholds increase [Fig. 7B], and apLDF may also admin-
ister less stimulation for large stimulation intensity K [Fig. 8B]. In contrast, cpLDF delivers more stimulation 
current as K increases, which also results in stronger desynchronization [Fig. 8], see also refs 39,40.

We also showed that apLDF is more efficient in suppressing abnormal neuronal synchronization than cpLDF, 
where apLDF delivers significantly less stimulation current for the same extent of the stimulation-induced desyn-
chronization [Fig. 8C]. However, if a strong desynchronization is required, cpLDF can also be a good candidate. 
For such a situation pulsatile nonlinear delayed feedback may also be appropriate and cause an even more efficient 
desynchronization40. A great enhancement in efficiency can also be observed for aDBS as compared to cDBS 
[Fig. 8D], where the amount of the stimulation administered by aDBS can be several times smaller than for cDBS. 
With such an improvement, aDBS approaches the pulsatile LDF in its efficiency in suppressing abnormal neu-
ronal dynamics, in particular, for the interphase gap of intermediate width, albeit the latter stimulation technique 
still remains to be more efficient.

With the considered model we tested the effects observed in electrophysiological data19 and also found that 
aDBS reduced the length of beta band bursts. We however revealed the same effect for cDBS [Fig. 9], which was 
not observed in patient data19 and might indicate that a more sophisticated model is necessary to account for such 
a difference, see discussion below. Nevertheless, in the considered model apLDF causes a significantly stronger 
reduction of LFP burst length than cpLDF [Fig. 10], i.e., adaptive stimulation more strongly reduces LFP burst 
length than continuous stimulation as suggested in ref. 19 for aDBS/cDBS. Future studies might also consider the 
impact on gamma power and gamma burst rate80.

In the computational model employed here44,45, cDBS and aDBS cause a desynchronization. However, there 
is no consensus on desynchronization being the mechanism of action of cDBS81–84. A large number of studies 
favor excitation or, conversely, depolarization blockade, inhibition, synaptic inhibition or synaptic depression, 
disruption (as opposed to desynchronization), jamming, and stimulation-induced modulation of pathological 
network activity or other processes as mechanisms of DBS81–84. By a similar token, several computational stud-
ies, performed in qualitatively different computational models, revealed a number of cDBS mechanisms that 
were qualitatively different from desynchronization85–88. Other modeling studies86,89,90 reported desynchronizing 
effects of cDBS as observed in this study. In particular, an interplay between inhibitory and excitatory effects of 
the stimulation may support the desynchronizing impact of cDBS86, which we also observed in the considered 
model, where both excitatory (STN) and inhibitory (GPe) neuronal populations participate in establishing such 
a stimulation-induced desynchronized regime. The mechanism of LDF with smooth stimulation signal is, on the 
other hand, relatively well understood, where the parameter regions of perfect desynchronization with vanishing 
mean field are bounded by bifurcation curves28,29,91. The desynchronization mechanism of LDF was also investi-
gated for a pulsatile stimulation signal and for the considerably more complex model used in this study, where a 
similar shape of the desynchronization regions was revealed39,41.

The closed-loop (delayed-feedback) techniques were investigated in this study in the framework of a top-down 
approach, where they were first introduced and studied in simple models28,29,36, and then the obtained predic-
tions were tested in more realistic models of increasing complexity and for more realistic stimulation setups39–41. 
Comparing the differences in the stimulation outcome of simple and more complex models could help to evaluate 
the important factors shaping the model response in the latter case. Such a model-based approach is aimed to 
assess and optimize the effects of DBS configurations, where both open-loop and closed-loop setups received 
much attention, see, for example, refs 28–41,45,66–68,71–73,85–90, and recent comprehensive reviews92,93 and references 
therein. Several sophisticated closed-loop control designs were suggested for DBS based on modulation of the 
stimulation waveform including stimulation timing, amplitude, spatiotemporal patterns of stimulation, and other 
parameters94–100. For this, the stimulation (feedback) goals can include the prescribed (healthy) activity patterns 
of the stimulated neuronal population, restoration of thalamocortical relay reliability, suppression of abnor-
mal beta oscillations to mention a few. In this study we considered a simple on-off adaptive stimulation pattern 
already realized in clinical setups5–12,14–16,18–20 and aimed at inducing desynchronization, which automatically 
leads to suppression of pathological neuronal (beta-band) oscillations. Future studies may also be devoted to 
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comparisons and combinations of different DBS optimization procedures, involving, for instance, variations of 
the temporal stimulation pattern with model-based computational evolution101.

The closed-loop stimulation approach presented here assumes that abnormal neuronal synchronization can be 
recorded reliably and represents disease-related abnormal processes and symptoms in the individual patient to a 
sufficient degree102,103. For a number of reasons, however, it is a matter of debate whether, for instance, beta band 
oscillations might serve as such a biomarker for feedback stimulation14,102–108, and, for example, cortical gamma 
oscillations can be incorporated in the feedback loop109, see also discussion in40,41.

For the next step in the top-down approach it is important to consider a realistic 3-Dim reconstruction of 
STN and GPe73 and accordingly increase the number of neurons110, which is expected to enhance the observed 
stimulation-induced desynchronization28. Since STN and GPe are influenced by the dynamics of larger circuits 
that involve the entire motor loop, other brain structures should also be incorporated in the models45,97,111,112. For 
example, the striatal input to GPe plays a pivotal role, in part because of the strengthening of the GPe synapses49. 
More realistic and physiologically motivated connectivity patterns, including intra-nuclear coupling, can also be 
considered44,45,113–115. The stimulation-induced desynchronization of STN-GPe activity can be beneficial if it also 
spreads to internal globus pallidus (GPi) and pallido-thalamic pathways and improves thalamic relay reliability45. 
Furthermore, antidromic activation of GPe projections and reentrant and reinforcement effects of HF DBS along 
the entire basal ganglia-thalamo-cortical motor loop may play an important role in the mechanism of DBS83,111. It 
is therefore necessary to extend the model from an isolated STN-GPe network to larger circuits45,92,93,97,111,112 and, 
for instance, take into account the cortical involvement in the abnormal synchronization process59. However, the 
more detailed and complex a model is, the more difficult it gets to perform a systematic analysis of its dynamics 
and obtain reasonably reliable and general predictions.
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