001     863819
005     20210130002326.0
024 7 _ |a 10.1016/j.firesaf.2019.102835
|2 doi
024 7 _ |a 0379-7112
|2 ISSN
024 7 _ |a 1873-7226
|2 ISSN
024 7 _ |a altmetric:63449711
|2 altmetric
024 7 _ |a WOS:000499949900012
|2 WOS
037 _ _ |a FZJ-2019-03800
082 _ _ |a 690
100 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 0
|e Corresponding author
245 _ _ |a Application cases of inverse modelling with the PROPTI framework
260 _ _ |a New York, NY [u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582126362_3364
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper introduces a generalised inverse modelling framework, called PROPTI, with application examples in pyrolysis modelling. It is an open source tool, implemented in the programming language Python. With its generalised formulation, it is tailored to enable communication between arbitrary simulation models, different optimisation algorithms, as well as various experimental data series as optimisation targets. The framework aims to facilitate high performance computing resources, via multi-threading and the Message Passing Interface(MPI), in order to speed up the overall process. As simulation models, Fire Dynamics Simulator (FDS) and OpenFOAM are utilised during the presented work. A mock-up of a thermogravimetric analysis (TGA) is used for verification and shows that PROPTI can be employed to determine material parameter sets from experimental data. In this example, based on an artificial data set, the simulation data converges towards the exact solution. A series of mass loss calorimeter (MLC) tests provide real world examples. Here, the mass loss rates (MLR) of poly(methyl methacrylate) (PMMA) samples, subjected to different irradiance levels, were used. They provide target data sets for two different optimisation algorithms: shuffled complex evolution (SCE-UA) and fitness scaled chaotic artificial bee colony (FSCABC). The resulting, i.e. best fitting, material parameters are used for pyrolysis simulation with FDS. The convergence of the results and the performance of different optimisation strategies are discussed, by comparing the resulting simulation data and convergence series. In order to demonstrate the capability to use simulation tools other than FDS, a mock-up example in OpenFOAM for the steady state simulation of an iron beam, placed under lateral stress, is presented. The PROPTI framework is not limited to time series as target data, but any kind of data sets can be used. Combinations of temporal and spatial data can be used and may open new optimisation targets and approaches for the determination of pyrolysis parameters.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Pyrolysis and Structural Mechanics (jjsc27_20160501)
|0 G:(DE-Juel1)jjsc27_20160501
|c jjsc27_20160501
|f Pyrolysis and Structural Mechanics
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hehnen, Tristan
|0 P:(DE-Juel1)174283
|b 1
700 1 _ |a Lauer, Patrick
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Trettin, Corinna
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Vinayak, Ashish
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.firesaf.2019.102835
|g Vol. 108, p. 102835 -
|0 PERI:(DE-600)1483569-1
|p 102835 -
|t Fire safety journal
|v 108
|y 2019
|x 0379-7112
909 C O |p VDB
|o oai:juser.fz-juelich.de:863819
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132044
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174283
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FIRE SAFETY J : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21