001     863820
005     20220930130215.0
024 7 _ |a 10.1016/j.nicl.2019.101915
|2 doi
024 7 _ |a 2128/22492
|2 Handle
024 7 _ |a pmid:31491825
|2 pmid
024 7 _ |a WOS:000485804400116
|2 WOS
024 7 _ |a altmetric:63824758
|2 altmetric
037 _ _ |a FZJ-2019-03801
082 _ _ |a 610
100 1 _ |a Achilles, Elisabeth I. S.
|0 P:(DE-Juel1)161332
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Neural correlates of differential finger gesture imitation deficits in left hemisphere stroke
260 _ _ |a [Amsterdam u.a.]
|c 2019
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583145456_31666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Behavioural studies in apraxic patients revealed dissociations between the processing of meaningful (MF) and meaningless (ML) gestures. Consequently, the existence of two differential neural mechanisms for the imitation of either gesture type has been postulated. While the indirect (semantic) route exclusively enables the imitation of MF gestures, the direct route can be used for the imitation of any gesture type, irrespective of meaning, and thus especially for ML gestures. Concerning neural correlates, it is debated which of the visuo-motor streams (i.e., the ventral steam, the ventro-dorsal stream, or the dorso-dorsal stream) supports the postulated indirect and direct imitation routes.To probe the hypotheses that regions of the dorso-dorsal stream are involved differentially in the imitation of ML gestures and that regions of the ventro-dorsal stream are involved differentially in the imitation of MF gestures, we analysed behavioural (imitation of MF and ML finger gestures) and lesion data of 293 patients with a left hemisphere (LH) stroke.Confirming previous work, the current sample of LH stroke patients imitated MF finger gestures better than ML finger gestures. The analysis using voxel-based lesion symptom mapping (VLSM) revealed that LH damage to dorso-dorsal stream areas was associated with an impaired imitation of ML finger gestures, whereas damage to ventro-dorsal regions was associated with a deficient imitation of MF finger gestures.Accordingly, the analyses of the imitation of visually uniform and thus highly comparable MF and ML finger gestures support the dual-route model for gesture imitation at the behavioural and lesion level in a substantial patient sample. Furthermore, the data show that the direct route for ML finger gesture imitation depends on the dorso-dorsal visuo-motor stream while the indirect route for MF finger gesture imitation is related to regions of the ventro-dorsal visuo-motor stream.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ballweg, Charlotta S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Niessen, Eva
|0 P:(DE-Juel1)156353
|b 2
|u fzj
700 1 _ |a Kusch, Mona
|0 P:(DE-Juel1)165846
|b 3
700 1 _ |a Ant, Jana M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 5
|u fzj
700 1 _ |a Weiss-Blankenhorn, Peter
|0 P:(DE-Juel1)131748
|b 6
|u fzj
773 _ _ |a 10.1016/j.nicl.2019.101915
|g Vol. 23, p. 101915 -
|0 PERI:(DE-600)2701571-3
|p 101915 -
|t NeuroImage: Clinical
|v 23
|y 2019
|x 2213-1582
856 4 _ |u https://juser.fz-juelich.de/record/863820/files/Invoice_OAD0000033748.pdf
856 4 _ |u https://juser.fz-juelich.de/record/863820/files/1-s2.0-S2213158219302657-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/863820/files/1-s2.0-S2213158219302657-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/863820/files/Invoice_OAD0000033748.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:863820
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161332
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156353
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131748
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE-CLIN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21