000863833 001__ 863833
000863833 005__ 20210130002329.0
000863833 0247_ $$2doi$$a10.3390/s19143101
000863833 0247_ $$2Handle$$a2128/22505
000863833 0247_ $$2altmetric$$aaltmetric:63509399
000863833 0247_ $$2pmid$$apmid:31337053
000863833 0247_ $$2WOS$$aWOS:000479160300068
000863833 037__ $$aFZJ-2019-03813
000863833 082__ $$a620
000863833 1001_ $$00000-0002-9502-2100$$aDomínguez-Niño, Jesús María$$b0$$eCorresponding author
000863833 245__ $$aOn the Accuracy of Factory-Calibrated Low-Cost Soil Water Content Sensors
000863833 260__ $$aBasel$$bMDPI$$c2019
000863833 3367_ $$2DRIVER$$aarticle
000863833 3367_ $$2DataCite$$aOutput Types/Journal article
000863833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1563433942_18562
000863833 3367_ $$2BibTeX$$aARTICLE
000863833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000863833 3367_ $$00$$2EndNote$$aJournal Article
000863833 520__ $$aSoil water content (SWC) monitoring is often used to optimize agricultural irrigation. Commonly, capacitance sensors are used for this task. However, the factory calibrations have been often criticized for their limited accuracy. The aim of this paper is to test the degree of improvement of various sensor- and soil-specific calibration options compared to factory calibrations by taking the 10HS sensor as an example. To this end, a two-step sensor calibration was carried out. In the first step, the sensor response was related to dielectric permittivity using calibration in media with well-defined permittivity. The second step involved the establishment of a site-specific relationship between permittivity and soil water content using undisturbed soil samples and time domain reflectometry (TDR) measurements. Our results showed that a model, which considered the mean porosity and a fitted dielectric permittivity of the solid phase for each soil and depth, provided the best fit between bulk permittivity and SWC. Most importantly, it was found that the two-step calibration approach (RMSE: 1.03 vol.%) provided more accurate SWC estimates compared to the factory calibration (RMSE: 5.33 vol.%). Finally, we used these calibrations on data from drip-irrigated almond and apple orchards and compared the factory calibration with our two-step calibration approach.
000863833 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000863833 588__ $$aDataset connected to CrossRef
000863833 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye Reemt$$b1
000863833 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2
000863833 7001_ $$0P:(DE-Juel1)140127$$aSchilling, Bernd$$b3
000863833 7001_ $$0P:(DE-HGF)0$$aCasadesús, Jaume$$b4
000863833 773__ $$0PERI:(DE-600)2052857-7$$a10.3390/s19143101$$gVol. 19, no. 14, p. 3101 -$$n14$$p3101 -$$tSensors$$v19$$x1424-8220$$y2019
000863833 8564_ $$uhttps://juser.fz-juelich.de/record/863833/files/sensors-19-03101.pdf$$yOpenAccess
000863833 8564_ $$uhttps://juser.fz-juelich.de/record/863833/files/sensors-19-03101.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000863833 909CO $$ooai:juser.fz-juelich.de:863833$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000863833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b1$$kFZJ
000863833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich$$b2$$kFZJ
000863833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140127$$aForschungszentrum Jülich$$b3$$kFZJ
000863833 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000863833 9141_ $$y2019
000863833 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000863833 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000863833 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000863833 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSENSORS-BASEL : 2017
000863833 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000863833 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000863833 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000863833 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000863833 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000863833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000863833 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000863833 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000863833 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000863833 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000863833 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000863833 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000863833 980__ $$ajournal
000863833 980__ $$aVDB
000863833 980__ $$aUNRESTRICTED
000863833 980__ $$aI:(DE-Juel1)IBG-3-20101118
000863833 9801_ $$aFullTexts