001     863841
005     20240708132752.0
037 _ _ |a FZJ-2019-03819
041 _ _ |a English
100 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 0
|e Corresponding author
|u fzj
111 2 _ |a MUNICH BATTERY DISCUSSION 2019
|c Garching
|d 2019-03-18 - 2019-03-19
|w Germany
245 _ _ |a HIGH ENERGY DENSITY: CHANCES AND CHALLENGES OF OXIDE-BASED SOLID-STATE BATTERIES
260 _ _ |c 2019
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1564126668_7548
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
520 _ _ |a In order to put oxide-based solid-state batteries into practice (Figure 1), systematic investigations were carried out to answer questions of chemical stability between solid-state electrolyte and electrode materials [Miara, 2016]. In addition to these results, it will be described how H2O and CO2 can affect solid electrolytes. Findings of various analysis techniques, especially depth-resolved methods like nuclear reaction analysis, Rutherford backscattering spectrometry, and secondary ion mass spectrometry, and raising issues will be presented and discussed in this talk. Figure 1: Oxide-based bulk solid-state battery based on LiCoO2 / Li7La3Zr2O12 mixed cathode, Li7La3Zr2O12 electrolyte, and Li metal anode.Up to now, research has shown that Li7La3Zr2O12 garnets (LLZ) and Lithium phosphorus oxynitrides (LiPON) are apparently the only electrolyte materials that can resist the low reduction potential of metallic Lithium as well as high electrochemical potentials up to about 5 V vs. Li/Li+. Lithium ion conductors based on LLZ are particularly promising solid electrolytes for solid-state Lithium batteries due to their high Lithium ion conductivity. However, the implementation into a practical battery cell is impeded by challenges arising from material processing which are partially associated with high temperature heat treatments [Uhlenbruck, 2016; Tsai, 2019]. Moreover, the use of metallic Lithium as anode is not as straightforward as expected: Lithium metal filament growth can also occur within ceramic electrolytes [Tsai, 2016].AcknowledgementsThe authors gratefully acknowledge financial support of the Helmholtz Association of German Research Centers under the grant “Speicher und Vernetzte Infrastrukturen“ and Helmholtz Institute Münster (HI MS), and of the German Federal Ministry of Education and Research under grant numbers 13N9973, 03SF0477A and 03X4634C; the authors are responsible for the content of this publication.ReferencesL. Miara, A. Windmüller, C.-L. Tsai, W. D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. Ceder, About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes (…), ACS Appl. Mater. Interfaces 8 (2016) 26842-26850C.-L. Tsai, V. Roddatis, C. Vinod Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, and O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces 8 (2016) 10617-10626C.-L. Tsai, Q. Ma, C. Dellen, S. Lobe, F. Vondahlen, A. Windmüller, D. Grüner, H. Zheng, S. Uhlenbruck, M. Finsterbusch F. Tietz,, D. Fattakhova-Rohlfing, H. P. Buchkremer and O. Guillon, A garnet structure-based all-solid-state Li battery without interface modification: resolving incompatibility issues on positive electrodes, Sustainable Energy Fuels, 2019, 3, 280S. Uhlenbruck, J. Dornseiffer, S. Lobe, C. Dellen, C.-L. Tsai, B. Gotzen, D. Sebold, M. Finsterbusch, O. Guillon, Cathode-Electrolyte Material Interactions during Manufacturing of Inorganic Solid-State Lithium Batteries, J. Electroceram. 38 (2016), 197-206
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 1
|u fzj
700 1 _ |a Lobe, Sandra
|0 P:(DE-Juel1)161444
|b 2
|u fzj
700 1 _ |a Möller, Sören
|0 P:(DE-Juel1)139534
|b 3
|u fzj
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 4
|u fzj
700 1 _ |a Windmüller, Anna
|0 P:(DE-Juel1)165951
|b 5
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 6
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 7
|u fzj
909 C O |o oai:juser.fz-juelich.de:863841
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)139534
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)165951
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21